Proceedings Volume 9215

Radiation Detectors: Systems and Applications XV

cover
Proceedings Volume 9215

Radiation Detectors: Systems and Applications XV

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 2 October 2014
Contents: 6 Sessions, 15 Papers, 0 Presentations
Conference: SPIE Optical Engineering + Applications 2014
Volume Number: 9215

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9215
  • Threat Detection and Monitoring
  • Imaging Detectors and Systems I
  • Image Reconstruction and Analysis
  • Imaging Detectors and Systems II
  • Poster Session
Front Matter: Volume 9215
icon_mobile_dropdown
Front Matter: Volume 9215
This PDF file contains the front matter associated with SPIE Proceedings Volume 9215, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Threat Detection and Monitoring
icon_mobile_dropdown
A new pad-based neutron detector for stereo coded aperture thermal neutron imaging
I. Dioszegi, B. Yu, G. Smith, et al.
A new coded aperture thermal neutron imager system has been developed at Brookhaven National Laboratory. The cameras use a new type of position-sensitive 3He-filled ionization chamber, in which an anode plane is composed of an array of pads with independent acquisition channels. The charge is collected on each of the individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The new design has several advantages for coded-aperture imaging applications in the field, compared to the previous generation of wire-grid based neutron detectors. Among these are its rugged design, lighter weight and use of non-flammable stopping gas. The pad-based readout occurs in parallel circuits, making it capable of high count rates, and also suitable to perform data analysis and imaging on an event-by-event basis. The spatial resolution of the detector can be better than the pixel size by using a charge sharing algorithm. In this paper we will report on the development and performance of the new pad-based neutron camera, describe a charge sharing algorithm to achieve sub-pixel spatial resolution and present the first stereoscopic coded aperture images of thermalized neutron sources using the new coded aperture thermal neutron imager system.
Recent results with a combined gamma-ray and neutron imaging detector
L. Soundara-Pandian, C. M. Whitney, E. B. Johnson, et al.
Numerous instruments have been developed for performing gamma-ray imaging and neutron imaging for research, nondestructive testing, medicine and national security. However, none are capable of imaging gamma-rays and neutrons simultaneously while also discriminating gamma-rays from the neutron. This paper will describe recent experimental results obtained using a gamma/neutron camera based on Cs2LiYCl6:Ce (CLYC) scintillation crystals, which can discriminate gamma-rays from neutrons. The ability to do this while also having good energy resolution provides a powerful capability for detecting and identifying shielded special nuclear materials for security applications. Also discussed are results obtained using a LaBr3 scintillation crystal.
Rapid response radiation sensors for homeland security applications
Sanjoy Mukhopadhyay, Richard Maurer, Paul Guss
The National Security Technologies, LLC, Remote Sensing Laboratory is developing a rapid response radiation detection system for homeland security field applications. The intelligence-driven system is deployed only when non-radiological information about the target is verifiable. The survey area is often limited, so the detection range is small; in most cases covering a distance of 10 meters or less suffices. Definitive response is required in no more than 3 seconds and should minimize false negative alarms, but can err on the side of positive false alarms. The detection system is rapidly reconfigurable in terms of size, shape, and outer appearance; it is a plug-and-play system. Multiple radiation detection components (viz., two or more sodium iodide scintillators) are used to independently “over-determine” the existence of the threat object. Rapid response electronic dose rate meters are also included in the equipment suite. Carefully studied threat signatures are the basis of the decision making. The use of Rad-Detect predictive modeling provides information on the nature of the threat object. Rad-Detect provides accurate dose rate from heavily shielded large sources; for example those lost in Mexico were Category 1 radiation sources (~3,000 Ci of 60Co), the most dangerous of five categories defined by the International Atomic Energy Agency. Taken out of their shielding containers, Category 1 sources can kill anyone who is exposed to them at close range for a few minutes to an hour. Whenever possible sub-second data acquisition will be attempted, and, when deployed, the system will be characterized for false alarm rates. Although the radiation detection materials selected are fast (viz., faster scintillators), their speed is secondary to sensitivity, which is of primary importance. Results from these efforts will be discussed and demonstrated.
Scintillation properties of a Cs2LiLa(Br6)90%(Cl6)10%:Ce3+ (CLLBC) crystal
Paul P. Guss, Thomas G. Stampahar, Sanjoy Mukhopadhyay, et al.
In investigations of Ce3+-doped Cs2LiLa(Br6)90%(Cl6)10% (CLLBC) elpasolite crystals, the crystals show an excellent neutron and gamma (n/γ) radiation response. The results of our studies on the scintillation properties of CLLBC viz. radioluminescence, energy resolution, light yield, decay times, and nonproportionality are discussed. The CLLBC detector can provide energy resolution as good as 4.1% at 662 keV (FWHM), which is better than that of NaI:Tl. Because the crystal contains 6Li, CLLBC can also detect thermal neutrons. In the energy spectra, the full energy thermal neutron peak appears near or above 3 MeV gamma equivalent energy. This high-energy signature for the thermal neutron peak means that very effective pulse height discrimination is possible. Unfortunately, because the core-to-valence luminescence observed in other elpasolites that can be exploited for effective pulse shape discrimination (PSD) is not observed in the CLLBC, other strategies for obtaining the PSD of CLLBC are needed. The n/γ discrimination capability of CLLBC detectors may be optimized by tuning the cerium doping content for maximum effect on n/γ pulse shape differences. The value of adding a chlorine component to the nominal CLLB crystal is discussed. Because the crystal contains chlorine, its sensitivity to fast neutrons is better than that of Cs2LiLaBr6 (CLLB). Further, an array of three of these CLLBC detectors may be able to perform directional detection in both the neutron and gamma channels simultaneously.
Imaging Detectors and Systems I
icon_mobile_dropdown
Ultra-fast high-resolution hybrid and monolithic CMOS imagers in multi-frame radiography
A new burst-mode, 10-frame, hybrid Si-sensor/CMOS-ROIC FPA chip has been recently fabricated at Teledyne Imaging Sensors. The intended primary use of the sensor is in the multi-frame 800 MeV proton radiography at LANL. The basic part of the hybrid is a large (48×49 mm2) stitched CMOS chip of 1100×1100 pixel count, with a minimum shutter speed of 50 ns. The performance parameters of this chip are compared to the first generation 3-frame 0.5-Mpixel custom hybrid imager. The 3-frame cameras have been in continuous use for many years, in a variety of static and dynamic experiments at LANSCE. The cameras can operate with a per-frame adjustable integration time of ~ 120ns-to- 1s, and inter-frame time of 250ns to 2s. Given the 80 ms total readout time, the original and the new imagers can be externally synchronized to 0.1-to-5 Hz, 50-ns wide proton beam pulses, and record up to ~1000-frame radiographic movies typ. of 3-to-30 minute duration. The performance of the global electronic shutter is discussed and compared to that of a high-resolution commercial front-illuminated monolithic CMOS imager.
Determining x-ray spectra of radiographic sources with a Compton spectrometer
Amanda E. Gehring, Michelle A. Espy, Todd J. Haines, et al.
Flash radiography is a diagnostic with many physics applications, and the characterization of the energy spectra of such sources is of interest. A Compton spectrometer has been proposed to conduct these measurements. Our Compton spectrometer is a 300 kg neodymium-iron magnet constructed by Morgan et al1, and it is designed to measure spectra in the <1 MeV to 20 MeV range. In this device, the x-rays from a radiographic source are collimated into a narrow beam directed on a converter foil. The forward-selected Compton electrons that are ejected from the foil enter the magnetic field region of the spectrometer. The electrons are imaged on a focal plane, with their position determined as a function of their energy. The x-ray spectrum is then reconstructed. Challenges in obtaining these measurements include limited dose of x-rays and the short pulse duration (about 50 ns) for time-resolved measurements. Here we present energy calibration measurements of the spectrometer using a negative ion source. The resolution of the spectrometer was measured in previous calibration experiments to be the greater of 1% or 0.1 MeV/c1. The reconstruction of spectra from a bremsstrahlung source and Co-60 source are also presented.
Image Reconstruction and Analysis
icon_mobile_dropdown
Irregular large-scale computed tomography on multiple graphics processors improves energy-efficiency metrics for industrial applications
Edward S. Jimenez Jr., Eric L. Goodman, Ryeojin Park, et al.
This paper will investigate energy-efficiency for various real-world industrial computed-tomography reconstruction algorithms, both CPU- and GPU-based implementations. This work shows that the energy required for a given reconstruction is based on performance and problem size. There are many ways to describe performance and energy efficiency, thus this work will investigate multiple metrics including performance-per-watt, energy-delay product, and energy consumption. This work found that irregular GPU-based approaches1 realized tremendous savings in energy consumption when compared to CPU implementations while also significantly improving the performance-per- watt and energy-delay product metrics. Additional energy savings and other metric improvement was realized on the GPU-based reconstructions by improving storage I/O by implementing a parallel MIMD-like modularization of the compute and I/O tasks.
A high-performance GPU-based forward-projection model for computed tomography applications
Ismael Perez, Matthew Bauerle, Edward S. Jimenez Jr., et al.
This work describes a high-performance approach to radiograph (i.e. X-ray image for this work) simulation for arbitrary objects. The generation of radiographs is more generally known as the forward projection imaging model. The formation of radiographs is very computationally expensive and is not typically approached for large-scale applications such as industrial radiography. The approach described in this work revolves around a single GPU-based implementation that performs the attenuation calculation in a massively parallel environment. Additionally, further performance gains are realized by exploiting the GPU-specific hardware. Early results show that using a single GPU can increase computational performance by three orders-of- magnitude for volumes of 10003 voxels and images with 10002 pixels.
Fisher information as a gamma-ray detector design tool
The extraction of gamma-ray event information from detectors is an estimation problem as the signals are governed by multiple random effects such as information carrier (eg; scintillation-light photon, electron-hole pair) generation, propagation/transport and detection. A quantitative measure of how well the measured signals can be used to produce an estimate of the parameters is given by Fisher Information. In this work, we demonstrate several applications of Fisher Information as a powerful practical tool to quantify the information content in detector signals and help guide design decisions in scintillation and semiconductor detector development.
Exploring mediated reality to approximate x-ray attenuation coefficients from radiographs
Edward S. Jimenez Jr., Laurel J. Orr, Megan L. Morgan, et al.
Estimation of the x-ray attenuation properties of an object with respect to the energy emitted from the source is a challenging task for traditional Bremsstrahlung sources. This exploratory work attempts to estimate the x-ray attenuation profile for the energy range of a given Bremsstrahlung profile. Previous work has shown that calculating a single effective attenuation value for a polychromatic source is not accurate due to the non-linearities associated with the image formation process. Instead, we completely characterize the imaging system virtually and utilize an iterative search method/constrained optimization technique to approximate the attenuation profile of the object of interest. This work presents preliminary results from various approaches that were investigated. The early results illustrate the challenges associated with these techniques and the potential for obtaining an accurate estimate of the attenuation profile for objects composed of homogeneous materials.
Imaging Detectors and Systems II
icon_mobile_dropdown
The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors
Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices’ active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.
Imaging properties of pixellated scintillators with deep pixels
H. Bradford Barber, David Fastje, Daniel Lemieux, et al.
We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.
Poster Session
icon_mobile_dropdown
Real-time acquisition and preprocessing system of transient electromagnetic data based on LabVIEW
Transient electromagnetic method (TEM) is regarded as an everlasting issue for geological exploration. It is widely used in many research fields, such as mineral exploration, hydrogeology survey, engineering exploration and unexploded ordnance detection. The traditional measurement systems are often based on ARM、DSP or FPGA, which have not real-time display, data preprocessing and data playback functions. In order to overcome the defects, a real-time data acquisition and preprocessing system based on LabVIEW virtual instrument development platform is proposed in the paper, moreover, a calibration model is established for TEM system based on a conductivity loop. The test results demonstrated that the system can complete real-time data acquisition and system calibration. For Transmit-Loop-Receive (TLR) response, the correlation coefficient between the measured results and the calculated results is 0.987. The measured results are basically consistent with the calculated results. Through the late inversion process for TLR, the signal of underground conductor was obtained. In the complex test environment, abnormal values usually exist in the measured data. In order to solve this problem, the judgment and revision algorithm of abnormal values is proposed in the paper. The test results proved that the proposed algorithm can effectively eliminate serious disturbance signals from the measured transient electromagnetic data.
Radoptic effect in InP and GaN for ultrafast scintillator applications
Kristina Brown, Paul Steele, Alden Curtis
Ultrafast scintillators are the subject of current research in an effort to better resolve ultrafast phenomena in high-energy density physics (HEDP) experiments. Despite extensive research on new scintillator materials, the essential mechanism of energy absorption, excitation, and photo-emission has remained unchanged for over 50 years. Recently, a new class of semiconductor detector has been developed utilizing the radoptic effect, or the change of refractive index when subjected to radiation, in an attempt to record events faster than conventional scintillators.1 This study was designed for the observation of the radoptic effect by optical interferometry in different semiconductors to experimentally determine the fastest and most sensitive materials for the optimization of current radsensors.