Proceedings Volume 9745

Organic Photonic Materials and Devices XVIII

cover
Proceedings Volume 9745

Organic Photonic Materials and Devices XVIII

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 18 May 2016
Contents: 11 Sessions, 20 Papers, 0 Presentations
Conference: SPIE OPTO 2016
Volume Number: 9745

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9745
  • Biophotonics
  • Optical Waveguides
  • Materials I
  • EO-Polymer Materials/Devices
  • Nanophotonics
  • OLEDs
  • Nonlinear Optics
  • Organic/Inorganic Hybrids I
  • Organic/Inorganic Hybrids II
  • Poster Session
Front Matter: Volume 9745
icon_mobile_dropdown
Front Matter: Volume 9745
This PDF file contains the front matter associated with SPIE Proceedings Volume 9745, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Biophotonics
icon_mobile_dropdown
Electro-optic enhancing interfacial buffer layers for nonlinear optic polymers
Here we demonstrate a 3X - 6X increase in the nonlinearity, or electro-optic (EO) coefficient, and a 40% - 85% increase in working device yield, of the nonlinear optic (NLO) polymer disperse red 1:polymethylmethacrylate (DR1:PMMA) by introducing a thin guanine nucleobase interfacial buffer layer, deposited between the NLO polymer and the cathode and a thin bathocuproine (BCP) interfacial buffer layer, deposited between the NLO polymer and the anode. This has the potential to realize significantly higher EO coefficients without the need to synthesize new NLO polymer materials, as well as an increase in device yield due to less failure during poling.
Optical Waveguides
icon_mobile_dropdown
Fabrication of polymer based integrated photonic devices by maskless lithography
We present our recent results on the fabrication of photonic devices such as single-mode and few-mode waveguides, Ycouplers as well as integrated interferometric sensor devices. The devices were created by means of a fabrication method based on maskless lithography, which allows for fabricating embedded integrated polymer elements on a scale of several square centimeters with a resolution down to one micron. We demonstrate the versatility of our approach by presenting first results on photonic structures created by maskless lithography.
Materials I
icon_mobile_dropdown
3D printing of natural organic materials by photochemistry
Joyce Laura Da Silva Gonçalves, Silvano Rodrigo Valandro, Hsiu-Fen Wu, et al.
In previous works, we have used two-photon induced photochemistry to fabricate 3D microstructures based on proteins, anti-bodies, and enzymes for different types of bio-applications. Among them, we can cite collagen lines to guide the movement of living cells, peptide modified GFP biosensing pads to detect Gram positive bacteria, anti-body pads to determine the type of red blood cells, and trypsin columns in a microfluidic channel to obtain a real time biochemical micro-reactor. In this paper, we report for the first time on two-photon 3D microfabrication of DNA material. We also present our preliminary results on using a commercial 3D printer based on a video projector to polymerize slicing layers of gelatine-objects.
High-conductance low-voltage organic thin film transistor with locally rearranged poly(3-hexylthiophene) domain by current annealing on plastic substrate
Zingway Pei, Hsing-Wang Tsai, Hsin-Cheng Lai
The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.
Protein-based flexible whispering gallery mode resonators
Huzeyfe Yilmaz, Abdon Pena-Francesch, Linhua Xu, et al.
The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.
EO-Polymer Materials/Devices
icon_mobile_dropdown
Hybrid plasmonic/electro-optic polymer modulator
Fanghui Ren, Qian Gao, Jingdong Luo III, et al.
We present theoretical design and experimental demonstration of electro-optic modulation in metallic slits infiltrated by polymer. Dynamic control over surface plasmon plaritons(SPPs) was achieved by modulating the refractive index of the polymer layer adjacent to the metal surface with interdigitated configuration. Intensity modulation of the Fano resonance of the sub-wavelength plasmonic structure was observed and expected to achieve high-speed operation.
Nanophotonics
icon_mobile_dropdown
Optimization of electrospinning techniques for the realization of nanofiber plastic lasers
L. Persano, M. Moffa, V. Fasano, et al.
Electrospinning technologies for the realization of active polymeric nanomaterials can be easily up-scaled, opening perspectives to industrial exploitation, and due to their versatility they can be employed to finely tailor the size, morphology and macroscopic assembly of fibers as well as their functional properties. Light-emitting or other active polymer nanofibers, made of conjugated polymers or of blends embedding chromophores or other functional dopants, are suitable for various applications in advanced photonics and sensing technologies. In particular, their almost onedimensional geometry and finely tunable composition make them interesting materials for developing novel lasing devices. However, electrospinning techniques rely on a large variety of parameters and possible experimental geometries, and they need to be carefully optimized in order to obtain suitable topographical and photonic properties in the resulting nanostructures. Targeted features include smooth and uniform fiber surface, dimensional control, as well as filament alignment, enhanced light emission, and stimulated emission. We here present various optimization strategies for electrospinning methods which have been implemented and developed by us for the realization of lasing architectures based on polymer nanofibers. The geometry of the resulting nanowires leads to peculiar light-scattering from spun filaments, and to controllable lasing characteristics.
Control of photon transport properties in nanocomposite nanowires
M. Moffa, V. Fasano, A. Camposeo, et al.
Active nanowires and nanofibers can be realized by the electric-field induced stretching of polymer solutions with sufficient molecular entanglements. The resulting nanomaterials are attracting an increasing attention in view of their application in a wide variety of fields, including optoelectronics, photonics, energy harvesting, nanoelectronics, and microelectromechanical systems. Realizing nanocomposite nanofibers is especially interesting in this respect. In particular, methods suitable for embedding inorganic nanocrystals in electrified jets and then in active fiber systems allow for controlling light-scattering and refractive index properties in the realized fibrous materials. We here report on the design, realization, and morphological and spectroscopic characterization of new species of active, composite nanowires and nanofibers for nanophotonics. We focus on the properties of light-confinement and photon transport along the nanowire longitudinal axis, and on how these depend on nanoparticle incorporation. Optical losses mechanisms and their influence on device design and performances are also presented and discussed.
Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance
Juri Ito, Kotaro Kajikawa
We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.
OLEDs
icon_mobile_dropdown
Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions
Zhe Shu, Oliver Pabst, Erik Beckert, et al.
Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.
Nonlinear Optics
icon_mobile_dropdown
Quantum calculation of the second-order hyperpolarizability of chiral molecules in the "one-electron" model
Francois Hache
Second-harmonic generation in chiral molecules has been thoroughly studied, especially in surface experiments. On a molecular viewpoint, the linear optical properties of chiral molecules necessitate to include the magnetic dipole response, but such is not the case for second-order nonlinear optics where fully electric-dipole response is sufficient. We propose here a full quantum-mechanical calculation of the hyperpolarizability of chiral molecules in the "one-electron" model which shows that (i) such chiral molecules are inherently nonlinear and (i) for nonlinear response, achiral and chiral contributions can have the same order of magnitude, contrarily to what is observed in linear optics.
Organic/Inorganic Hybrids I
icon_mobile_dropdown
Printed optically transparent graphene cellulose electrodes
Dogan Sinar, George K. Knopf, Suwas Nikumb, et al.
Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be “tuned” by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.
Organic/Inorganic Hybrids II
icon_mobile_dropdown
Organic-inorganic composites for THz device fabrication
B. Cai, T. M. Ye, G. Bo, et al.
In this paper, several organic-inorganic composites were prepared for Terahertz (THz) devices fabrication. First, a two-layer structure was designed for femtosecond (fs) laser/THz radiation separation. The top layer was made by sintered 20-40 nm hollow quartz particles which can diffuse the incident fs laser thus decrease the power intensity. The bottom layer comprised of silicon 100 nm particles and cycle-olefine polymer (COP), by which the fs laser light can be greatly scattered and absorbed but THz radiation can propagate insusceptibly. With this two-layer structure a high efficient fs-laser/THz filter was fabricated successfully. Second, titania–polymer composites with a very high refractiveindex tunability and high transparency in the THz region were prepared. By controlling the blending ratio of the titania particle, a broad refractive-index tuning range from 1.5 to 3.1 was realized. Then, the composites were used to fabricate antireflective (AR) layers on a high-resistivity silicon (HR-Si) substrate. By utilizing the thermoplasticity of the titania– polymer composite, a graded-index structure was fabricated via a hot-embossing method. Because of the good refractive-index matching between the composite and the HR-Si substrate, a broadband AR layer was fabricated.
Photovoltaic and optical properties of perovskite thin films fabricated using Marangoni flow assisted electrospraying
Som Sarang, Hidetaka Ishihara, Yen-Chang Chen, et al.
We have developed an electrospraying technique inspired from Marangoni flow seen in nature. We demonstrate our ability to synthesise highly crystalline uniform perovskite thin films with enhanced coverage and high absorption. Due to a difference in the vapour pressure of DMSO and NMP, a gradient force is developed that helps in propagating the incoming precursor droplet to coalesce and merge with other droplets thus inducing a dynamic self-assembly within the thin film. This results in thin films with high uniformity and good morphological and topological characteristics, that collectivelty resulted in a respectable PCE of greater than 14%. Optical studies are conducted in parallel to better understand the energy phase space of perovskite crystals. The high temperature tetragonal phase showed a high recombination rate of 180 ns, ideal for photovoltaic performances, while the low temperature measurements reveal considerable complexity in spectral and dynamic properties that demand further invesgtiation.
Poster Session
icon_mobile_dropdown
High efficiency polymer light-emitting diodes using ternary electron injection layers
Ten-Chin Wen, Kai-Wei Tsai, Jiun-Yun Jan, et al.
The high efficiency of polymer light-emitting diodes (PLED) with ternary electron injection layers (EILs) including tetraoctylammonium bromide (TOAB), poly (vinylpyrrolidone) (PVP) and polyethylenimine (PEIE) to comprise PEIE-PVP-TOAB (E-P-T) EIL that has been achieved and well-studied via mixture design. In the unary system, TOAB can construct interfacial dipole via self-assembly crystallization atop various conjugated polymer surfaces to elevate the vacuum level of cathode. When employing three EILs as ternary system, the electrical property of PLED was further improved. The optimum luminescence efficiency respectively are 13.4 cd/A and 13.5 cd/A for T-P-D and E-P-T based PLED. In the ternary system (E-P-T), PEIE , PVP, and TOAB respectively provides electron injection, hole blocking, and polymer intersecting in the ternary based devices. The intersecting between PEIE and PVP by TOAB was evidenced by roughness change from AFM images.
Carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells studied by electroluminescence spectroscopy
Taketo Handa, Makoto Okano, David M. Tex, et al.
Organic-inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I and Br), are considered as promising candidates for emerging thin-film photovoltaics. For practical implementation, the degradation mechanism and the carrier dynamics during operation have to be clarified. We investigated the degradation mechanism and the carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells using photoluminescence (PL) and electroluminescence (EL) imaging spectroscopies. By applying forward bias-voltage, an inhomogeneous distribution of the EL intensity was clearly observed from the CH3NH3PbI3 solar cells. By comparing the PL- and EL-images, we revealed that the spatial inhomogeneity of the EL intensity is a result of the inhomogeneous luminescence efficiency in the perovskite layer. An application of bias-voltage for several tens of minutes in air caused a decrease in the EL intensity and the conversion efficiency of the perovskite solar cells. The degradation mechanism of perovskite solar cells under bias-voltage in air is discussed.
Growth directions of C8-BTBT thin films during drop-casting
Naoki Iizuka, Tomohiko Zanka, Yosuke Onishi, et al.
Because charge transport in a single crystal is anisotropic, control of its orientation is important for enhancing electrical characteristics and reducing variations among devices. For growing an organic thin film, a solution process such as inkjet printing offers advantages in throughput. We have proposed to apply an external temperature gradient during drop-casting and to control the direction of solvent evaporation. In experiment, a temperature gradient was generated in a bare Si substrate by placing it on a Si plate bridging two heat stages. When a solution containing 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) was dropped on the substrate, evaporation started at the hotter side of the droplet and proceeded toward the colder side. The front line of the liquid was not pinned and the solution extended toward the colder region. As a result, a thin film was formed in a 7mm-long region. The peripheral region of the film was significantly thicker due to the coffee ring effect. The surface of the rest of the film was mostly smooth and terrace structures with 2.6nm steps were observed. The step roughly corresponds to the length of the C8-BTBT molecule. The film thickness varied from 20nm to 50nm over the distance of 3mm. Another film was grown on a glass substrate under a similar condition. Observation of the film with a polarizing microscope revealed that fan-shaped domains were formed in the film and that their optical axes were mostly along the directions of the solvent evaporation.
Effect of UV irradiation on adsorption/desorption of oxygen and water on carbon nanotubes
Eric S. Muckley, Anthony J. Nelson, Christopher B. Jacobs, et al.
Carbon nanotube (CNT) films composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in the film conductivity and mass were measured in situ. We find that UV irradiation increases the resistive response of CNT films to O2 and H2O by more than an order of magnitude. In m-SWNT and MWNT films, UV irradiation changes the sign of the resistive response to O2 and H2O by generating free charge carriers. S-SWNTs show the largest UV-induced resistive response and exhibit weakening of van der Waals interactions with the QCM crystal when exposed to gas/vapor.
Photonic applications based on biological/inorganic nano hybrids
Xin Zhang, Pengfei Wu, Chandra Yelleswarapu
Biological Retinal is an effective and efficient photochromic compounds and one of the best candidates for photon conversion, transmission and storage, from the view of bionics and natural selection. We observed large optical nonlinearity by using new fabricated films of photoactive Retinol hybrid materials. Based on reversible photoinduced anisotropy and transient optical characteristics, the Retinol hybrids can be used to design novel photonic devices, such as holographic elements, all-optical switch and spatial light modulator. Also, the study is important for further understanding the photochemical mechanism of vision process.