Proceedings Volume 9190

Thirteenth International Conference on Solid State Lighting

cover
Proceedings Volume 9190

Thirteenth International Conference on Solid State Lighting

View the digital version of this volume at SPIE Digital Libarary.

Volume Details

Date Published: 8 October 2014
Contents: 7 Sessions, 30 Papers, 0 Presentations
Conference: SPIE Optical Engineering + Applications 2014
Volume Number: 9190

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9190
  • SSL Control Systems and Methods
  • LED Lifetime/Chromaticity Issues
  • Novel SSL Emitters
  • SSL System Design
  • Phosphors in LED lighting
  • Poster Session
Front Matter: Volume 9190
icon_mobile_dropdown
Front Matter: Volume 9190
This PDF file contains the front matter associated with SPIE Proceedings Volume 9190 including the Title Page, Copyright information, Table of Contents, Introduction, and the Conference Committee listing.
SSL Control Systems and Methods
icon_mobile_dropdown
Accurate chromatic control and color rendering optimization in LED lighting systems using junction temperature feedback
Marco Michele Sisto, Jonny Gauvin
Accurate color control of LED lighting systems is a challenging task: noticeable chromaticity shifts are commonly observed in mixed-color and phosphor converted LEDs due to intensity dimming. Furthermore, the emitted color varies with the LED temperature. We present a novel color control method for tri-chromatic and tetra-chromatic LEDs, which enable to set and maintain the LED emission at a target color, or combination of correlated color temperature (CCT) and intensity. The LED color point is maintained over variations in the LED junctions’ temperatures and intensity dimming levels. The method does not require color feedback sensors, so to minimize system complexity and cost, but relies on estimation of the LED junctions’ temperatures from the junction voltages. If operated with tetra-chromatic LEDs, the method allows meeting an additional optimization criterion: for example, the maximization of a color rendering metric like the Color Rendering Index (CRI) or the Color Quality Scale (CQS), thus providing a high quality and clarity of colors on the surface illuminated by the LED. We demonstrate the control of a RGBW LED at target D65 white point with CIELAB color difference metric triangle;a,bE < 1 for simultaneous variations of flux from approximately 30 lm to 100 lm and LED heat sink temperature from 25°C to 58°C. In the same conditions, we demonstrate a CCT error <1%. Furthermore, the method allows varying the LED CCT from 5500K to 8000K while maintaining luminance within 1% of target. Further work is ongoing to evaluate the stability of the method over LED aging.
Investigation of correlation of LF power modulation of light in natural and artificial illumination situations and acoustic emission
Florian P. Kleeberg, Holger L. Gutzmann, Cornelia Weyer, et al.
The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and ’effects to look for’ including measurement concepts is presented and discussed.
LED illuminant on the ambient light
Anqing Liu, Mishra Sandipan, Michael Shur
We develop an approach for combining illuminance and spectral power distribution of the LED and ambient light and apply our technique for developing an LED camera flashlight balancing the illuminance contrast between object and background. Our method uses the closed loop, multiobjective optimization comprising: (1) characterizing the lighting task by illuminance, correlated color temperature (CCT), and statistical color quality indices that include a set of Statistical Color Quality Metrics and the Color Rendition Index (CRI) implemented with indexes of S (saturation) or D (dulling); (2) measuring the illuminance and the spectrum of the ambient light on the target lighting surface, which might depend on all the sources proving illumination and on the reflected light; (3) determining the desired illuminance of the LED source on the target lighting surface; (4) calculating the desired luminous flux of the LED source according to the desired illuminance; (5) constituting the SPD of the LED source; (6) calculating the relative spectra counts of the LED source and the ambient light on the target lighting surface (7) calculating the CCT and statistical color quality indexes of the combined light; (8) repeating the above steps until the resulting SPD is close enough to the expectation. Using the above method, an LED camera flashlight has been designed, which works together with usual fluorescent ambient light and generates working lighting environment with high fidelity and high CCT (6000K). The spectrum and luminous flux of the LED lamp is automatically tunable with a change of the ambient light.
A high efficiency LED driver based on optical feedback
Edgar Marti-Arbona, Tino Copani, Bertan Bakkaloglu, et al.
Light emitting diodes (LEDs) offer durability, long life, and high efficiency that make them an excellent alternative for illumination applications. The efficiency of conventional drivers suffers from losses due to the current sensing method that they employ. In this paper, the LED array itself is used as an optical sensor by periodically measuring neighboring cells’ light intensity, instead of employing the commonly used series current-sense resistor. The results of this approach show that it provides accurate compensation of the LED characteristics, with less than one lumen variation in illumination, stability in color (color shift over time as low as ΔE = 0.76), and efficiency of up to 98.66%. The proposed sensor compensates for actual optical performance of the LED array and reduces aging effects compared to the approaches based in current measurement and control. The optical current-sensing method is a closed-loop feedback alternative, which improves the power efficiency of the LED driver by 3%. It maintains constant output illumination of the LED over time, and it utilizes a reduced number of components, thus extending the effective lifetime of LED-based devices.
Real time compensation of in aging effects in solid-state lighting
M. Cappitelli, J. R. Bleicken
All available Solid-State Lighting (SSL) systems like LED or OLED suffer from the burden of intrinsic and extrinsic aging effects. These aging effects lead to a degeneration of brightness and color inside the light source, which can be observed far before the failure time (D70). The paper presents a solution for a real time compensation system, which is able to compensate the color and brightness of a lighting system by optical sensing and real time optimization. This approach offers the opportunity to oper ate independently from the implemented light source type and number of primary colors. The benefit is an enhancement in the overall quality and durability of the light source parameters and an elongation of the system use. The solution utilizes a full color sensor and miniaturized embedded computing capabilities to ensure the dedicated performance. Compared to the cost of LED and OLED lighting systems, the overall benefit in quality justifies the additional costs.
LED Lifetime/Chromaticity Issues
icon_mobile_dropdown
A new lifetime estimation model for a quicker LED reliability prediction
B. H. Hamon, L. Mendizabal, G. Feuillet, et al.
LED reliability and lifetime prediction is a key point for Solid State Lighting adoption. For this purpose, one hundred and fifty LEDs have been aged for a reliability analysis. LEDs have been grouped following nine current-temperature stress conditions. Stress driving current was fixed between 350mA and 1A and ambient temperature between 85C and 120°C. Using integrating sphere and I(V) measurements, a cross study of the evolution of electrical and optical characteristics has been done. Results show two main failure mechanisms regarding lumen maintenance. The first one is the typically observed lumen depreciation and the second one is a much more quicker depreciation related to an increase of the leakage and non radiative currents. Models of the typical lumen depreciation and leakage resistance depreciation have been made using electrical and optical measurements during the aging tests. The combination of those models allows a new method toward a quicker LED lifetime prediction. These two models have been used for lifetime predictions for LEDs.
Uncertainty analysis for chromaticity coordinates and luminous flux measurements of LEDs
This paper introduces an uncertainty analysis model and its experimental implementation for chromaticity coordinates and luminous flux measurements of light-emitting diode (LED) sources. The uncertainty model applies the theory of the numerical method to estimate both the chromaticity coordinates and luminous flux uncertainties. The modeling process follows the steps described in GUM for determining the uncertainties. First, the mathematical functions for chromaticity coordinates and luminous flux are expressed according to both the sphere calibration and the LED measurement procedures. Based on the functions, the uncertainty contributors are identified as the input quantities of the model, and luminous flux and chromaticity coordinates are the output quantities. Second, the uncertainty contributors are categorized as random variables and systematic variables. Contributors such as spectrometer wavelength and spectral value repeatability are random variables; thus, their standard uncertainties are analyzed with statistical methods. The other contributors, such as spectrometer wavelength offsets and stray light, are systematic variables; thus, their standard uncertainties are estimated with non-statistical methods. In order to measure these contributors, several simple methods are developed for spectrometers and source measure units (SMU). Third, the sensitivity coefficients for the uncertainty contributors are calculated based on the numerical approach by calculating the output quantities with a change of the input quantities. Fourth, the uncertainties caused by each contributor are calculated using their standard uncertainties and sensitivity coefficients, and then combined. Finally, the expanded uncertainty is obtained with a coverage factor (k=2). The calculation for each step is conducted by a Matlab program.
Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods
Over the last two decades there has been extensive research done to improve the design of Organic Light Emitting Diodes (OLEDs) so as to enhance light extraction efficiency, improve beam shaping, and allow color tuning through techniques such as the use of patterned substrates, photonic crystal (PCs) gratings, back reflectors, surface texture, and phosphor down-conversion. Computational simulation has been an important tool for examining these increasingly complex designs. It has provided insights for improving OLED performance as a result of its ability to explore limitations, predict solutions, and demonstrate theoretical results. Depending upon the focus of the design and scale of the problem, simulations are carried out using rigorous electromagnetic (EM) wave optics based techniques, such as finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA), or through ray optics based technique such as Monte Carlo ray-tracing. The former are typically used for modeling nanostructures on the OLED die, and the latter for modeling encapsulating structures, die placement, back-reflection, and phosphor down-conversion. This paper presents the use of a mixed-level simulation approach which unifies the use of EM wave-level and ray-level tools. This approach uses rigorous EM wave based tools to characterize the nanostructured die and generate both a Bidirectional Scattering Distribution function (BSDF) and a far-field angular intensity distribution. These characteristics are then incorporated into the ray-tracing simulator to obtain the overall performance. Such mixed-level approach allows for comprehensive modeling of the optical characteristic of OLEDs and can potentially lead to more accurate performance than that from individual modeling tools alone.
Foil based optical elements for beam shaping and color homogenization of phosphor converted white LED sources
Franz P. Wenzl, Wolfgang Nemitz, Ladislav Kuna, et al.
Typically, light emission from light-emitting diodes (LEDs) occurs under a broad range of angles. On the other hand, for a lot of applications a more directed light emission is desired. This can be realized with the use of additional optical elements, like lenses. Still, this may provide some complications in case of light sources consisting of a plurality of individual LEDs, e.g., a panel light, which is expected to illuminate a target area homogenously. Instead of a homogeneous illumination, the use of lenses is prone to give reason for an inhomogeneous light distribution in which the emission from the individual LEDs is easily distinguishable. Therefore, there is a strong request for alternative strategies of beam shaping of LED light in LED-luminaires targeting both on a directed as well as homogeneous illumination of an area. In this contribution we discuss an alternative approach in this regard: Firstly, a collimator is designed, which strongly directs the light emitted from a single LED light source. Subsequently, a foil with an optical structure, that can be fabricated in a cost-effective way by soft-lithography and which diffuses the collimated light again, is applied on the collimator. The optical structure and the respective amount of light diffusion are designed in a way that the desired radiation patterns both from a single as well as a plurality of LED sources can be realized. In addition, we show that the realization of a desired radiation profile is not the only advantage of such an approach. A key benefit of this concept is the possibility to reduce the angle dependent inhomogeneity
Novel SSL Emitters
icon_mobile_dropdown
Laser-activated remote phosphor conversion with ceramic phosphors
Alan Lenef, John Kelso, Maxim Tchoul, et al.
Direct laser activation of a remote phosphor, or LARP, is a highly effective approach for producing very high luminance solid-state light sources. Such sources have much smaller étendue than LEDs of similar power, thereby greatly increasing system luminous fluxes in projection and display applications. While several commercial products now employ LARP technology, most current configurations employ phosphor powders in a silicone matrix deposited on rotating wheels. These provide a low excitation duty cycle that helps limit quenching and thermal overload. These systems already operate close to maximum achievable pump powers and intensities. To further increase power scaling and eliminate mechanical parts to achieve smaller footprints, OSRAM has been developing static LARP systems based on high-thermal conductivity monolithic ceramic phosphors. OSRAM has recently introduced a static LARP product using ceramic phosphor for endoscopy and also demonstrated a LARP concept for automotive forward lighting1. We first discuss the basic LARP concept with ceramic phosphors, showing how their improved thermal conductivity can achieve both high luminous fluxes and luminance in a static configuration. Secondly, we show the importance of scattering and low optical losses to achieving high overall efficiency and light extraction. This is shown through experimental results and radiation transport calculations. Finally, we discuss some of the fundamental factors which limit the ultimate luminance achievable with ceramic converted LARP, including optical pumping effects and thermal quenching.
An imaging-based photometric and colorimetric measurement method for characterizing OLED panels for lighting applications
Yiting Zhu, Nadarajah Narendran, Jianchuan Tan, et al.
The organic light-emitting diode (OLED) has demonstrated its novelty in displays and certain lighting applications. Similar to white light-emitting diode (LED) technology, it also holds the promise of saving energy. Even though the luminous efficacy values of OLED products have been steadily growing, their longevity is still not well understood. Furthermore, currently there is no industry standard for photometric and colorimetric testing, short and long term, of OLEDs. Each OLED manufacturer tests its OLED panels under different electrical and thermal conditions using different measurement methods. In this study, an imaging-based photometric and colorimetric measurement method for OLED panels was investigated. Unlike an LED that can be considered as a point source, the OLED is a large form area source. Therefore, for an area source to satisfy lighting application needs, it is important that it maintains uniform light level and color properties across the emitting surface of the panel over a long period. This study intended to develop a measurement procedure that can be used to test long-term photometric and colorimetric properties of OLED panels. The objective was to better understand how test parameters such as drive current or luminance and temperature affect the degradation rate. In addition, this study investigated whether data interpolation could allow for determination of degradation and lifetime, L70, at application conditions based on the degradation rates measured at different operating conditions.
SSL System Design
icon_mobile_dropdown
Complete solid state lighting (SSL) line at CEA LETI
I. C. Robin, P. Ferret, A. Dussaigne, et al.
With a long experience in optoelectronics, CEA-LETI has focused on Light Emitting Diode (LED) lighting since 2006. Today, all the technical challenges in the implementation of GaN LED based solid state lighting (SSL) are addressed at CEA-LETI who is now an RandD player throughout the entire value chain of LED lighting. The SSL Line at CEA-LETI first deals with the simulation of the active structures and LED devices. Then the growth is addressed in particular 2D growth on 200 mm silicon substrates. Then, technological steps are developed for the fabrication of LED dies with innovative architectures. For instance, Versatile LED Array Devices are currently being developed with a dedicated μLED technology. The objective in this case is to achieve monolithical LED arrays reported and interconnected through a silicon submount. In addition to the required bonding and 3D integration technologies, new solutions for LED chip packaging, thermal management of LED lamps and luminaires are also addressed. LETI is also active in Smart Lighting concepts which offer the possibility of new application fields for SSL technologies. An example is the recent development at CEA LETI of Visible Light Communication Technology also called LiFi. With this technology, we demonstrated a transmission rate up to 10 Mb/s and real time HD-Video transmission.
Optimization of optical systems for LED spot lights concerning the color uniformity
Spotlighting is one illumination field where the application of light emitting diodes (LED) creates many advantages. Commonly, the system for spot lights consists of a LED light engine and collimating secondary optics. Through angular or spatial separated emitted light from the source and imaging optical elements, a non uniform far field appears with colored rings, dots or patterns. Many feasible combinations result in very different spatial color distributions. Several combinations of three multi-chip light sources and secondary optical elements like reflectors and TIR lenses with additional facets or scattering elements were analyzed mainly regarding the color uniformity. They are assessed by the merit function Usl which was derived from human factor experiments and describes the color uniformity based on the visual perception of humans. Furthermore, the optical systems are compared concerning efficiency, peak candela and aspect ratio. Both types of optics differ in the relation between the color uniformity level and other properties. A plain reflector with a slightly color mixing light source performs adequate. The results for the TIR lenses indicate that they need additional elements for good color mixing or blended light source. The most convenient system depends on the requirements of the application.
A lighting metric for quantitative evaluation of accent lighting systems
Cyril O. Acholo, Kenneth A. Connor, Richard J. Radke
Accent lighting is critical for artwork and sculpture lighting in museums, and subject lighting for stage, Film and television. The research problem of designing effective lighting in such settings has been revived recently with the rise of light-emitting-diode-based solid state lighting. In this work, we propose an easy-to-apply quantitative measure of the scene's visual quality as perceived by human viewers. We consider a well-accent-lit scene as one which maximizes the information about the scene (in an information-theoretic sense) available to the user. We propose a metric based on the entropy of the distribution of colors, which are extracted from an image of the scene from the viewer's perspective. We demonstrate that optimizing the metric as a function of illumination configuration (i.e., position, orientation, and spectral composition) results in natural, pleasing accent lighting. We use a photorealistic simulation tool to validate the functionality of our proposed approach, showing its successful application to two- and three-dimensional scenes.
Design a LED coupler to collocate with a light guide plate for illumination
Tun-Chien Teng, Li-Wei Tseng
With progress in the LED luminous efficiency, the LED gradually expands the scope of application from the backlight to general lighting. In the application of the backlight, a light guide plate (LGP) is used to guide the LED light and emits the light uniformly from its surface to achieve a uniform planar light source. Except for the merit of slim volume, the LGP can prevent the LED light from directly entering the eyes resulting in glare; thereby the LGP is also used for general lighting applications, especially for the high-directionality lighting with slim volume. For the illumination, the prescribed distribution of the light emitted from the LGP had better modulated by both the microstructure on the LGP surface and a LED lens/coupler. In general, distribution of the light emitted from the LED is partially adjusted by the LED lens/coupler before the light entering the LGP. In this study we designed a LED coupler to collocate with two types of LGPs so that the LGP can uniformly emits the highly-collimated light or the light with the prescribed intensity distribution, which can be used for the backlight or lighting application, respectively.
Phosphors in LED lighting
icon_mobile_dropdown
High-thermal-stability white light-emitting-diodes employing broadband glass phosphor
Wood-Hi Cheng, Li-Yin Chen, Wei-Chih Cheng
We report the high-thermal-stability white light-emitting-diodes (WLEDs) employing broadband glass phosphors. The broadband glass phosphors were fabricated by sintering the mixture of multiple phosphors and SiO2-based glass (SiO2-Na2O-Al2O3-CaO) at 680℃. Y3Al5O12:Ce 3+ (YAG), Lu3Al5O12:Ce3+ (LuAG), and CaAlSiN3: Eu2+ (Nitride) phosphor crystals were chosen as the yellow, green, and red emitters of the glass phosphors, respectively. The results showed that the broadband phosphors exhibited high quantum-yield of 54% and color-rendering index (CRI) of 90. The lumen degradation, chromaticity shift, and transmittance loss in the broadband glass-based WLEDs under thermal aging temperature at 150, 250, 350 and 450℃ were also presented and compared with those of silicone-based WLEDs under thermal aging temperature at 150 and 250℃. The results demonstrated that the broadband glass-based WLEDs exhibited better thermal stability in lumen degradation, chromaticity shift, and transmittance loss than the silicone-based WLEDs. The excellent thermal stability of the broadband glass-based WLEDs with high CRI is essentially beneficial to the applications for next-generation solid-state indoor lighting, especially in the area where high power and absolute reliability are required.
Fabrication and performance of dual-wavelength white light-emitting diodes assisted with red-emitting nanocrystals
Hong-Shuo Chen, Sheng-Shiun Chen, Kuan-Wen Wang, et al.
An analysis of an optical-digital system based on the architecture of the Mach-Zehnder interferometer for recording holographic filters is presented. The holographic recording system makes use of one microscope objective in each interferometer arm. Moreover, the Gabor Wavelet Transform is implemented for the holographic reconstruction stage. The samples studied of this research are selected in order to test the retrieval algorithm and to characterize the resolution of the holographic recording system. In this last step, some sections of an USAF1951 resolution chart are used. These samples allow us to study the features of lighting in the recorded system. Additionally, some organic samples are used to proven the capabilities of the method because biological samples have much complex morphological composition than others. With this in mind, we can verify the frequencies recovered with each of the settings set in the retrieval method. Experimental results are presented.
Optical and thermal performance of a remote phosphor plate
Xi Mou, Nadarajah Narendran, Yiting Zhu, et al.
The objective of this study was to understand how optical and thermal performances are impacted in a remote phosphor LED (light-emitting diode) system when the phosphor plate thickness and phosphor concentration change with a fixed amount of a commonly used YAG:Ce phosphor. In the first part of this two-part study, an optical raytracing analysis was carried out to quantify the optical power and the color properties as a function of remote phosphor plate thickness, and a laboratory experiment was conducted to verify the results obtained from the raytracing analysis and also to examine the phosphor temperature variation due to thickness change.
Mathematical model to analyze phosphor layer heat transfer of an LED system
This study investigated the capability of a mathematical model in estimating the phosphor layer heat transfer of an LED system. The focus was on determining the temperature distribution based on light propagation in the phosphor layer. The mathematical model was built upon past work by Kang et al. and solved numerically with heat generation and transfer incorporated into the model. The model light propagation and heat generation was compared with past research and then used to simulate an experimental study in order to evaluate the solution from the present model and compare it with the temperature measurements of the experimental study. The solution to the temperature distribution using the mathematical model had good agreement with the experimentally measured temperature values using an IR thermal imaging camera. Then the model was used to predict the temperature distribution in the phosphor layer under different heat transfer conditions to provide insight that is difficult to observe in experimental studies due to practical limitations.
The impact of individual materials parameters on color temperature reproducibility among phosphor converted LED sources
Susanne Schweitzer, Wolfgang Nemitz, Christian Sommer, et al.
For a systematic approach to improve the white light quality of phosphor converted light-emitting diodes (LEDs) for general lighting applications it is imperative to get the individual sources of error for color temperature reproducibility under control. In this regard, it is imperative to understand how compositional, optical and materials properties of the color conversion element (CCE), which typically consists of phosphor particles embedded in a transparent matrix material, affect the constancy of a desired color temperature of a white LED source. In this contribution we use an LED assembly consisting of an LED die mounted on a printed circuit board (PCB) by chip-on-board technology and a CCE with a glob-top configuration as a model system and discuss the impact of potential sources for color temperature deviation among individual devices. Parameters that are investigated include imprecisions in the amount of materials deposition, deviations from the target value for the phosphor concentration in the matrix material, deviations from the target value for the particle sizes of the phosphor material, deviations from the target values for the refractive indexes of phosphor and matrix material as well as deviations from the reflectivity of the substrate surface. From these studies, some general conclusions can be drawn which of these parameters have the largest impact on color deviation and have to be controlled most precisely in a fabrication process in regard of color temperature reproducibility among individual white LED sources.
Poster Session
icon_mobile_dropdown
Lightweight LED Fluorescent lamp using engineering poly carbonate
Hyun-Ju Cho, Jong-Phil Lee
In this study, we developed lightweight LED fluorescent lamp using thermally conductive engineering PC a heat sink instead of metal. In order to secure price competitiveness, we used double extrusion molding which extrude both the heat sink plate and diffuser plate simultaneously. Fabricated fluorescent lamp has less than 20% of weight as compare to glass fluorescent lamp and power consumption is 20.2 watts, luminous efficiency 123.9 lm/W, respectively. Despite the heat conductive plastic is adopted, the system temperature is maintained less than 35℃ and the thermal resistance is 25 ℃/W.
Improved light extraction of nitride-based flip-chip light-emitting diodes by forming air voids on Ar-implanted sapphire substrate
Yu-Hsiang Yeh, Jinn-Kong Sheu, Ming-Lun Lee, et al.
GaN-based flip-chip light emitting diodes (FC-LEDs) with embedded air voids grown on a selective-area Arimplanted AlN/sapphire (AIAS) substrate was demonstrated in this study. The proposed FC LED with an embedded light scattering layer can destroy the light interference and thereby increase the LEE of GaN-based flip-chip LEDs. The epitaxial layers grown on Ar-implanted regions exhibited lower growth rates compared with those grown on implantation-free regions. Accordingly, air voids formed over the implanted regions after merging laterally grown GaN facet fronts. The light-output power of LEDs grown on AIAS was greater than that of LEDs grown on implantation free sapphire substrates. At an injection current of 700 mA, the output power of LEDs grown on AIAS was enhanced by 20% compared with those of LEDs without embedded air voids. The increase in output power was mainly attributed to the scattering of light around the air voids, which increased the probability of photons escaping from the LEDs. This study on FC LEDs with embedded light-scattering layer highlights the potential application of these LEDs as an alternative to conventional patterned sapphire substrates for improving the LEE of GaN/sapphire-based LEDs. Based on ray tracing simulation, if the height and the width of bottom of gaps were increased to 3 μm, the Lop could be enhanced over 60%.
Investigation of structure in the modular light pipe component for LED automotive lamp
Hsi-Chao Chen, Yang Zhou, Chien-Sheng Huang, et al.
Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.
Realization of quantum dot-based polarized white LEDs using short-wavelength pass dichroic filters and reflective polarizer films
This study introduces quantum dot (QD)-based polarized white light-emitting diodes (W-LEDs) combined with a shortwavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions, and a reflective polarizer film (RPF)-sandwiched AgIn5S8-ZnS QD layer using an electrospray (e-spray) method. The AgIn5S8-ZnS QDs are good candidates for W-LEDs because of their broad emission band (~100 nm) from the donoracceptor emission. The yellow emitting AgIn5S8-ZnS QDs are synthesized using a colloidal hot injection method and mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for e-spray coating on glass. Furthermore, SPDFs are used instead of glass substrates to enhance the yellow emission from the QD layer. To create the polarized light, the RPF is fabricated on QD-coated glass and SPDFs. To create white light, a blue LED chip (λmax = 450 nm) is used as the blue light source and an excitation source for the yellow QD film with an applied current of 60 mA. The electroluminescence (EL) intensity with an angular orientation of the polarizer is measured as a function of the polarizer-rotating angle from −90° to 90° at 10° intervals.
High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters
Hee Chang Yoon, Ji Hye Oh, Young Rag Do
This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.
Tri-wavelength single output Infrared LED based on QW area selective intermixing
A monolithic multi-wavelength LED based on selective dielectric cap intermixing is investigated experimentally. The proposed LED is fabricated on a QW structure and it has an independent wavelength intensity power control for each wavelength. The device consists of three regions that have been intermixed to varying extents of SiO2 thicknesses then annealed at 975°C for 20s.The regions are blue shifted by amounts that depend on the thickness of a SiO2 capping film. Contact stripes are then evaporated on each region as intensity power control to emit its respective wavelength. Experimental results showed an independently tri-wavelength emission of 797nm, 780nm and 775nm.
Solution of multi-element LED light sources development automation problem
Aleksandr N. Chertov, Elena V. Gorbunova, Valery V. Korotaev, et al.
The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.
Investigation of optical intensity in indoor visible light communication with different LEDs array
Hsi-Chao Chen, Cheng-Jyun Liou, Yang Chou, et al.
The purpose of this study was look for the optimized design of light source array applied in indoor lighting combined with visible light communication. The design of different light source arrays: circle, radiation, and rectangle were simulated and experimental for lighting, and then actually be used in visible light communication. The simulation results showed the rectangle array has the largest illumination flux than other arrays. And its total flux was 2662.3 lm; maximum illumination was 338 lx, and the effective illumination area of above 200 lx with a cover area of 2090 mm2. The measurement results also exhibited the rectangle array has the largest illumination flux than other arrays. Its total luminous flux is 2538.95 lm, and the effective illumination area of above 200 lx with a cover area of 2078 mm2. The measurement and simulation results have the same trend and the curve similarity was more than 99% by normalized cross correlation. Finally, combined with the signal transfer analysis of visible light communication, a measurement system was built with the input signal frequency of 1k Hz and the transmission distance of 1.8m. The receive waveform of rectangle array was best in the transport of free space to other arrays and the divergence angle could reaches to 85°.
New understandings of failure modes in SSL luminaires
Sarah D. Shepherd, Karmann C. Mills, Robert Yaga, et al.
As SSL products are being rapidly introduced into the market, there is a need to develop standard screening and testing protocols that can be performed quickly and provide data surrounding product lifetime and performance. These protocols, derived from standard industry tests, are known as ALTs (accelerated life tests) and can be performed in a timeframe of weeks to months instead of years. Accelerated testing utilizes a combination of elevated temperature and humidity conditions as well as electrical power cycling to control aging of the luminaires. In this study, we report on the findings of failure modes for two different luminaire products exposed to temperature-humidity ALTs. LEDs are typically considered the determining component for the rate of lumen depreciation. However, this study has shown that each luminaire component can independently or jointly influence system performance and reliability. Material choices, luminaire designs, and driver designs all have significant impacts on the system reliability of a product. From recent data, it is evident that the most common failure modes are not within the LED, but instead occur within resistors, capacitors, and other electrical components of the driver. Insights into failure modes and rates as a result of ALTs are reported with emphasis on component influence on overall system reliability.