Spie Press Book
MOEMS: Micro-Opto-Electro-Mechanical SystemsFormat | Member Price | Non-Member Price |
---|---|---|
"This is a great compendium of fundamentals, research, and applications in the rapidly growing area of optical microsystems. Every engineer working on MOEMS should have this on his or her bookshelf." --Douglas R. Sparks, Ph.D., Executive Vice President, Integrated Sensing Systems Inc. (ISSYS)
This book introduces the exciting and fast-moving field of MOEMS to graduate students, scientists, and engineers by providing a foundation of both micro-optics and MEMS that will enable them to conduct future research in the field. Born from the relatively new fields of MEMS and micro-optics, MOEMS are proving to be an attractive and low-cost solution to a range of device problems requiring high optical functionality and high optical performance. MOEMS solutions include optical devices for telecommunication, sensing, and mobile systems such as v-grooves, gratings, shutters, scanners, filters, micromirrors, switches, alignment aids, lens arrays, and hermetic wafer-scale optical packaging. An international team of leading researchers contributed to this book, and it presents examples and problems employing cutting-edge MOEM devices. It will inspire researchers to further advance the design, fabrication, and analysis of MOEM systems.
- Foreword xv
- Preface xvii
- Acknowledgments xix
- 1 Introduction 1
- 1.1 Integrated circuits and the evolution of micromachining 1
- 1.2 Micro-electro-mechanical systems review 3
- 1.3 New developments in micro-optics 8
- 1.4 Micro-optics in MEMS: MOEMS overview 11
- 1.4.1 New developments in optical switches 13
- 1.4.2 Tunable filters and WDMs 14
- 1.4.3 Digital mirror devices 15
- 1.4.4 MOEMS scanners 15
- 1.4.5 MOEMS technology applied to telecom 17
- 1.5 Microsystems: Terms and visions 17
- 1.5.1 MEMS and MOEMS activities worldwide 18
- 1.5.2 MEMS and MOEMS science worldwide 19
- 1.5.3 MEMS and MOEMS markets worldwide 19
- 1.6 Scope of this book 20
- 2 Microfabrication 27
- 2.1 Introduction 27
- 2.2 Bulk micromachining 32
- 2.2.1 Wet bulk micromachining 32
- 2.2.2 Dry bulk micromachining 35
- 2.3 Deep x-ray lithography (DXRL) 40
- 2.4 Surface micromachining 47
- 2.5 CMOS-compatible MEMS and MOEMS 57
- 2.6 Compound-semiconductor-based MEMS and MOEMS 60
- 2.7 Optics-specific issues for MOEMS 66
- 3 Micro-optics 75
- 3.1 Introduction 75
- 3.2 History 75
- 3.3 Deflection of light by micro- and nanostructures 77
- 3.3.1 Refractive and diffractive micro-optics 77
- 3.3.2 Artificial index material 78
- 3.3.3 Photonic crystals 79
- 3.3.4 Resonant filters 80
- 3.3.5 Demands on profile shapes 80
- 3.4 Binary and multilevel optics 82
- 3.4.1 Motivation 82
- 3.4.2 Fabrication of binary optics structures 82
- 3.4.3 Fabrication of multilevel structures 84
- 3.4.3.1 Concept 85
- 3.4.3.2 Diffraction efficiency 86
- 3.5 Technologies for continuous surface profiles 88
- 3.5.1 Lithographic technologies 89
- 3.5.1.1 Technologies based on surface tension 89
- 3.5.1.2 Analog lithography 96
- 3.5.2 Transfer of surface profiles into optical materials 110
- 3.5.2.1 Replication 110
- 3.5.2.2 Proportional transfer 113
- 3.6 Conclusion 114
- 4 Actuation and Sensing 121
- 4.1 Introduction 121
- 4.1.1 Microactuator 122
- 4.1.2 MOEMS-related sensors 124
- 4.1.3 Organization of this chapter 125
- 4.2 Electrostatic actuators 125
- 4.2.1 Background 125
- 4.2.2 In-plane actuation 129
- 4.2.2.1 Electrostatic electrode actuator 129
- 4.2.2.2 Comb drive 129
- 4.2.2.3 Scratch drive actuator 131
- 4.2.2.4 Linear electrostatic micromotor 131
- 4.2.2.5 Rotary electrostatic micromotors 132
- 4.2.3 Out-of-plane actuation 134
- 4.2.3.1 Parallel-plate drive 134
- 4.2.3.2 Torsion actuation 135
- 4.2.4 Three-dimensional actuation 138
- 4.3 Thermal actuators 139
- 4.3.1 Background 139
- 4.3.2 In-plane actuation 141
- 4.3.2.1 Pseudo-bimorph actuator 141
- 4.3.2.2 Bent-beam electrothermal actuator 142
- 4.3.2.3 U-shaped and serpentine-shaped electrothermal actuators 144
- 4.3.2.4 Linear microvibromotor 145
- 4.3.2.5 Rotary actuator 146
- 4.3.3 Out-of-plane actuation 147
- 4.3.3.1 Bimorph and multimorph 147
- 4.3.3.2 Symmetric pseudo-bimorph 149
- 4.3.4 Three-dimensional actuation 149
- 4.4 Shape memory actuators 150
- 4.4.1 Background 150
- 4.4.2 In-plane actuation 154
- 4.4.2.1 Linear SMA microactuators 154
- 4.4.2.2 SMA microgripper 155
- 4.4.3 Out-of-plane actuation 156
- 4.4.3.1 SMA bimorph 156
- 4.4.4 Three-dimensional actuation 158
- 4.5 Piezoelectric actuators 159
- 4.5.1 Background 159
- 4.5.2 In-plane actuation 163
- 4.5.2.1 LIGA piezoelectric actuator 163
- 4.5.2.2 Linear microworms 164
- 4.5.2.3 Inchworm 164
- 4.5.2.4 Rotation micromotor 165
- 4.5.3 Out-of-plane actuation 166
- 4.5.3.1 Bimorph 166
- 4.5.3.2 Multilayer cantilever 168
- 4.5.3.3 Torsion: 2D scanning mirror 169
- 4.5.4 Three-dimensional actuation 170
- 4.6 Magnetic actuators 171
- 4.6.1 Background 171
- 4.6.2 In-plane actuation 177
- 4.6.2.1 Latchable bistable actuator 177
- 4.6.2.2 Magnetic micromotor 179
- 4.6.3 Out-of-plane actuation 180
- 4.6.3.1 Cantilever and membrane actuation 180
- 4.6.3.2 Torsion actuation 181
- 4.6.4 Three-dimensional actuation 185
- 4.7 MOEMS-related sensors 187
- 4.7.1 Displacement sensor 187
- 4.7.2 Chemical sensor 190
- 4.7.3 Fluorescence detection sensor 191
- 4.7.4 Inertial sensor: accelerometer 194
- 4.7.5 Pressure sensor 196
- 5 Micro-Optic Components, Testing, and Applications 211
- 5.1 Micro-optic components 211
- 5.1.1 Micro-optical lenses 211
- 5.1.1.1 Vapor deposition 213
- 5.1.1.2 Mass transport 214
- 5.1.2 Liquid crystal optical components 214
- 5.1.3 Beam-shaping optical components 216
- 5.1.3.1 Optical collimator 216
- 5.1.3.2 Optical transformer 217
- 5.2 Optical testing 219
- 5.2.1 Optical profile measurement 219
- 5.2.1.1 Optical profilometers using focus detection 220
- 5.2.1.2 Optical profilometers based on white light interferometry 222
- 5.2.2 Surface deviation measurements 226
- 5.2.2.1 Spherical microlenses 226
- 5.2.2.2 Cylindrical microlenses 239
- 5.2.3 Wave aberration measurement 248
- 5.2.3.1 Weak phase objects 250
- 5.2.3.2 Microlenses as strong phase objects 253
- 5.2.3.3 Cylindrical lenses 259
- 5.2.3.4 Shearing methods and wavefront sensors 262
- 5.3 Micro-optics applications 266
- 5.3.1 Beam steering 266
- 5.3.2 Microlens and FPA integration 270
- 5.3.2.1 Micro-optics integration 270
- 5.3.2.2 Device characterization 272
- 6 Fiber Optic Systems 279
- 6.1 Introduction 279
- 6.2 Fundamentals 280
- 6.2.1 Optical fiber types 280
- 6.2.2 Key parameters of fiber optic components 283
- 6.2.3 Direct fiber or waveguide movement 284
- 6.2.4 Manipulation in a collimated beam 286
- 6.3 Fiber collimators and collimator arrays 287
- 6.3.1 Fiber arrays 287
- 6.3.2 Microlens array requirements 288
- 6.3.3 Fabrication of microlens arrays 291
- 6.3.4 Fiber array and microlens array mounting techniques 294
- 6.4 Fiber optic components with MOEMS 295
- 6.4.1 Variable optical attenuators 295
- 6.4.2 Dynamic gain and channel equalizers 298
- 6.4.3 Fiber optic switches 299
- 6.4.3.1 Switches with direct fiber or waveguide movement 299
- 6.4.3.2 Switches with 2D MOEMS 301
- 6.4.3.3 Digital matrix switches 304
- 6.4.3.4 Switch matrices with 3D MOEMS 308
- 6.4.3.5 Multimode fiber switches 311
- 6.4.4 Tunable sources and filters 312
- 6.5 Summary 314
- 7 Optical Scanners 319
- 7.1 Introduction 319
- 7.2 Operation principles and classifications of optical scanners 320
- 7.3 Scanning systems utilizing mechanical structures 321
- 7.3.1 Tilting micromirrors 321
- 7.3.2 Lens scanners 322
- 7.3.3 Micromotor scanners 324
- 7.3.4 Mirrors with a leverage mechanism 324
- 7.3.5 Surface-micromachined mirrors 326
- 7.4 Multidimensional scanning 327
- 7.5 Microactuators designed for scanning 328
- 7.5.1 Electrostatic scanners 328
- 7.5.1.1 Electrostatic actuators with parallel electrodes 329
- 7.5.1.2 Electrostatic actuation with tapered electrodes 332
- 7.5.1.3 Electrostatic comb-drive surface-micromachined scanners 332
- 7.5.1.4 Electrostatic comb drive for out-of-plane tilting mirrors 333
- 7.5.2 Piezoelectric scanners 336
- 7.5.2.1 Scanners using thin film piezoelectric actuators 336
- 7.5.2.2 Piezoelectric scanners in hybrid technologies 337
- 7.5.3 Electrothermal scanners 338
- 7.5.3.1 Principle of scanning 338
- 7.5.3.2 Device structural design 338
- 7.5.3.3 Characterization and testing 340
- 7.5.4 Magnetic scanners 341
- 7.5.4.1 Electromagnetic scanners 341
- 7.5.4.2 Magnetostrictive scanners 343
- 7.6 Comparative characteristics 345
- 7.7 Environmental and survival testing 345
- 7.8 Applications to commercial products 349
- 7.9 Applications of MEMS movable mirrors 350
- 7.9.1 Image display systems 350
- 7.9.1.1 Display systems using a single scanner 350
- 7.9.1.2 Display systems using arrays of light deflectors 352
- 7.9.1.3 Three-dimensional display 353
- 7.9.2 Components for optical communication 353
- 7.9.2.1 A digital (crossbar, 2D) switch array 353
- 7.9.2.2 Analog (beam-steering, 3D) switch 355
- 8 Display and Imaging Systems 365
- 8.1 Introduction 365
- 8.2 Display systems 366
- 8.2.1 Retinal scanning displays 367
- 8.2.1.1 MEMS scanners for display applications 367
- 8.2.1.2 System performance 384
- 8.2.2 Grating Light Valve displays 389
- 8.2.2.1 Pixel structure and operation 389
- 8.2.2.2 Pixel performance 392
- 8.2.2.3 System performance 393
- 8.2.3 Digital micromirror device 396
- 8.2.3.1 Pixel structure 397
- 8.2.3.2 Pixel operation 399
- 8.2.3.3 Intensity modulation and switching time 401
- 8.2.3.4 Fabrication 403
- 8.2.3.5 System performance 403
- 8.2.4 Other MEMS display technologies 405
- 8.3 Imaging systems 408
- 8.3.1 Scanning imaging systems 408
- 8.3.2 Confocal imaging systems 411
- 8.3.3 Other MEMS-based scanned-beam systems 420
- 8.3.4 Scanned-probe imaging 422
- 8.3.5 Aberration correction for scanned imaging systems 423
- 8.3.6 MOEM spatial light modulators in scanned imaging systems 426
- 8.3.7 Array-based imaging systems (focal plane systems) 428
- 8.3.7.1 Thermal imaging focal plane arrays 428
- 9 Adaptive Optics 449
- 9.1 Introduction 449
- 9.1.1 History of adaptive optics 449
- 9.1.2 Conventional deformable-mirror technology 452
- 9.1.3 Motivations for MEMS deformable mirrors 453
- 9.1.4 The center for adaptive optics 453
- 9.1.5 The coherent communications, imaging, and targeting 457
- 9.2 Membrane deformable micromirrors 458
- 9.3 Polysilicon deformable micromirrors 460
- 9.4 Single crystal silicon deformable micromirrors 463
- 9.5 Metal deformable micromirrors 465
- 9.6 Packaging and electronics 466
- 9.7 Future trends and challenges 468
- 10 MEMS and MOEMS CAD and Simulation 473
- 10.1 Introduction 473
- 10.2 3D device simulation 475
- 10.2.1 Introduction 475
- 10.2.2 Process simulation 475
- 10.2.3 FEM and BEM simulation 477
- 10.2.3.1 Introduction 477
- 10.2.3.2 FEM simulation 478
- 10.2.3.3 BEM analysis 480
- 10.2.3.4 Comparison of FEM and BEM 481
- 10.2.3.5 Meshing 482
- 10.2.4 Noncontinuum methods 483
- 10.3 Actuator design and simulation 483
- 10.3.1 Introduction 483
- 10.3.2 Simulation of thermal actuators 483
- 10.3.3 Simulation of electrostatic actuators 485
- 10.4 Optical solvers 487
- 10.4.1 Introduction 487
- 10.4.2 Propagation phenomena 488
- 10.4.3 Optical theories 488
- 10.4.4 Mathematical techniques and approximations 489
- 10.4.5 Codes 490
- 10.5 System-level simulations 490
- 10.5.1 Optimization 493
- 10.5.2 Statistical analysis 494
- 10.5.3 Dedicated MOEMS simulation and cosimulation 495
- 10.5.4 System simulation example�pull-in computation 496
- 10.5.5 Packaging simulation 497
- 10.5.6 Reduced-order modeling 498
- 10.5.6.1 Example application: Reduction of a micromirror 500
- 10.6 Physical tools and verification 501
- 10.6.1 Design rule checking, extractors, layout versus schematic, and parasitics 503
- 10.7 Material, process, and reliability issues 504
- 10.8 Conclusions 504
- 11 MEMS and MOEMS Packaging 511
- 11.1 Overview 511
- 11.2 Background and introduction 511
- 11.2.1 Mixed signals, mixed domains, and mixed scales packaging:
- Towards the next generation of application-specific integrated systems 511
- 11.2.2 Microelectromechanical systems 513
- 11.3 Challenges in MEMS system integration 514
- 11.3.1 Release and stiction 516
- 11.3.2 Dicing 517
- 11.3.3 Die handling 518
- 11.3.4 Wafer-level encapsulation 518
- 11.3.5 Stress 519
- 11.3.6 Outgassing 519
- 11.3.7 Testing 520
- 11.3.8 State of the art in MEMS and MOEMS packaging 520
- 11.3.9 Summary and future directions 522
- 11.4 Packaging considerations and guidelines related to the Digital Micromirror Device 523
- 11.4.1 Introduction and background to MOEMS devices and particularly the DMD 523
- 11.4.2 Parameters influencing DMD packaging 526
- 11.4.3 DMD package design 527
- 11.4.3.1 DMD die size 528
- 11.4.3.2 Package piece parts 530
- 11.4.3.3 Substrate design 531
- 11.4.3.4 Window design 533
- 11.4.3.5 Package size 534
- 11.4.3.6 Headspace getters 534
- 11.4.4 DMD hermetic package assembly 535
- 11.4.5 Future packaging challenges 535
- 12 MEMS and MOEMS Materials 541
- 12.1 Introduction 541
- 12.2 Effects of materials on MOEMS 541
- 12.3 Measuring materials properties 549
- 12.3.1 Wafer curvature 549
- 12.3.2 Microstructures 550
- 12.3.3 In-process monitoring methods 555
- 12.4 Residual stress engineering 558
- 12.5 Conclusions 558
- Problems and Exercises 561
- Acronyms 585
- Index
© SPIE. Terms of Use
