Share Email Print

Proceedings Paper

Long-wavelength lasers using GaAs-based quantum dots
Author(s): Nikolai N. Ledentsov; Vitaly A. Shchukin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Modern trends in design of semiconductor lasers are addressed. Nanoscale coherent inclusions of narrower bandgap semiconductor in a wider gap semiconductor matrix, or quantum dots (QDs), are designed as a new type of active medium of injection lasers. QDs give a possibility to extend the wavelength range of heterostructure lasers on GaAs substrates to 1.3 micrometers and beyond and improve their device performance. 330 mW CW 1.3 micrometers single mode continuous wave (CW) edge emitters and 1.2 mW CW vertical-cavity surface- emitting lasers (VCSELs) are realized. Long operation lifetimes and other competitive device parameters are demonstrated. Novel device designs are proposed. In one concept high-order mode filtering in structures with periodically modulated refractive index containing a defect allows realization of stable narrow beam divergence fundamental model lasing both in edge-emitters and in VCSELs. In a different novel design, light propagates at some angle with respect to multilayer interference mirrors (MIR), and the MIRs and the cavity are calculated for the tilted photon incidence. Tilted cavity laser (TCL) gives wavelength-stabilized operation in edge and (or) in surface direction and does not require materials having high refractive index difference. New generations of semiconductor optical amplifiers, photodetectors, optical fibers, etc. may become a reality.

Paper Details

Date Published: 1 August 2002
PDF: 12 pages
Proc. SPIE 4732, Photonic and Quantum Technologies for Aerospace Applications IV, (1 August 2002); doi: 10.1117/12.477431
Show Author Affiliations
Nikolai N. Ledentsov, Technische Univ. Berlin (Germany)
Vitaly A. Shchukin, Technische Univ. Berlin (Germany)

Published in SPIE Proceedings Vol. 4732:
Photonic and Quantum Technologies for Aerospace Applications IV
Eric Donkor; Andrew R. Pirich; Eric Donkor; Michael J. Hayduk; Andrew R. Pirich; Edward W. Taylor, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?