Share Email Print

Proceedings Paper

Autofluorescence properties of skin and applications in dermatology
Author(s): Haishan Zeng; David I. McLean M.D.; Calum E. MacAulay; Harvey Lui M.D.
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Skin autofluorescence was observed as early as 1908. Its applications in dermatology was first reported in 1925- the use of Wood's lamp for the detection of fungal infection. In the first part of the paper, a historical review was presented on skin autofluorescence properties. In the second part, systematic research done in out laboratory on autofluorescence properties of normal and diseased skin was summarized. We developed three tools for the study: 1) a compact fiber optic spectrometer for in vivo macroscopic fluorescence spectral measurements on volunteers and patients; 2) a CCD camera based fluorescence imaging for in vivo macroscopic imaging of 2D fluorescence intensity distributions over various skin diseases; 3) a fiber optic microspectrophotometer (MSP) system for in vitro microscopic fluorescence spectral measurements and fluorescence imaging of frozen tissue sections. With these tools, we obtained the excitation-emission matrices (EEMs) of in vivo normal skin, the temporal dynamics of skin autofluorescence decay under continuous wave laser exposure, and fluorescence spectra of 1500 lesions from 600 patients spanning 35 disease types. Monte Carlo simulation has been employed to explain the autofluorescence decay dynamics and to reconstruct the in vivo spectra from in vitro microscopic fluorophore distribution and intrinsic fluorescence spectra of various skin structures. Spectral feature based linear discrimination function analysis and principal components decomposition analysis are performed to assess the potential of autofluorescence spectroscopy for skin cancer detection. Clinical test of a fluorescence scope system for skin cancer margin delineation is under way.

Paper Details

Date Published: 11 October 2000
PDF: 8 pages
Proc. SPIE 4224, Biomedical Photonics and Optoelectronic Imaging, (11 October 2000); doi: 10.1117/12.403940
Show Author Affiliations
Haishan Zeng, BC Cancer Agency (Canada)
David I. McLean M.D., Univ. of British Columbia and Vancouver Hospital and Health Sciences Ctr. (Canada)
Calum E. MacAulay, BC Cancer Agency (Canada)
Harvey Lui M.D., Univ. of British Columbia and Vancouver Hospital and Health Sciences Ctr. (Canada)

Published in SPIE Proceedings Vol. 4224:
Biomedical Photonics and Optoelectronic Imaging
Hong Liu; Qingming Luo, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?