Share Email Print

Proceedings Paper

Emotion detection model of Filipino music
Author(s): Kathleen Alexis Noblejas; Daryl Arvin Isidro; Mary Jane C. Samonte
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This research explored the creation of a model to detect emotion from Filipino songs. The emotion model used was based from Paul Ekman’s six basic emotions. The songs were classified into the following genres: kundiman, novelty, pop, and rock. The songs were annotated by a group of music experts based on the emotion the song induces to the listener. Musical features of the songs were extracted using jAudio while the lyric features were extracted by Bag-of- Words feature representation. The audio and lyric features of the Filipino songs were extracted for classification by the chosen three classifiers, Naïve Bayes, Support Vector Machines, and k-Nearest Neighbors. The goal of the research was to know which classifier would work best for Filipino music. Evaluation was done by 10-fold cross validation and accuracy, precision, recall, and F-measure results were compared. Models were also tested with unknown test data to further determine the models’ accuracy through the prediction results.

Paper Details

Date Published: 8 February 2017
PDF: 7 pages
Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), 102250J (8 February 2017); doi: 10.1117/12.2266741
Show Author Affiliations
Kathleen Alexis Noblejas, Mapua Institute of Technology (Philippines)
Daryl Arvin Isidro, Mapua Institute of Technology (Philippines)
Mary Jane C. Samonte, Mapua Institute of Technology (Philippines)

Published in SPIE Proceedings Vol. 10225:
Eighth International Conference on Graphic and Image Processing (ICGIP 2016)
Yulin Wang; Tuan D. Pham; Vit Vozenilek; David Zhang; Yi Xie, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?