Share Email Print

Proceedings Paper

An echelle diffraction grating for imaging spectrometer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We demonstrate an echelle diffraction grating (EDG) of 17 input waveguides and 33 output waveguides. For each input waveguide, only 17 of 33 output waveguides are used, receiving light ranging from 1520 nm to 1600 nm wavelength. The channel spacing of the EDG is 5 nm, with loss of -6dB and crosstalk of -17dB for center input waveguide and -15dB for edge input waveguides. Based on the 3 μm SOI platform the device is polarization insensitive. As a simple version of EDG spectrometer it is designed to be a part of the on-chip spectroscopic system of the push-broom scanning imaging spectrometer. The whole on-chip spectrometer consists of an optical on-off switch array, a multi-input EDG and detector array. With the help of on-off switch array the multiple input waveguides of the EDG spectrometer could work in a time division multiplexed fashion. Since the switch can scan very fast (less than 10 microseconds), the imaging spectrometer can be operated in push-broom mode. Due to the CMOS compatibility, the 17_channel EDG scales 2.5×3 mm2. The full version of EDG spectrometer is designed to have 129 input waveguides and 257 output waveguides (129 output channel for each input waveguide), working in wavelength ranging from 1250 nm to 1750 nm, and had similar blazed facet size with the 17_channel one, which means similar fabrication tolerance in grating facets. The waveguide EDG based imaging spectrometer can provide a low-cost solution for remote sensing on unmanned aerial vehicles, with advantages of small size, light weight, vibration-proof, and high scalability.

Paper Details

Date Published: 14 September 2016
PDF: 7 pages
Proc. SPIE 9973, Infrared Remote Sensing and Instrumentation XXIV, 99730D (14 September 2016); doi: 10.1117/12.2236666
Show Author Affiliations
Minyue Yang, Zhejiang Univ. (China)
Han Wang, Zhejiang Univ. (China)
Mingyu Li, Zhejiang Univ. (China)
Jian-Jun He, Zhejiang Univ. (China)

Published in SPIE Proceedings Vol. 9973:
Infrared Remote Sensing and Instrumentation XXIV
Marija Strojnik, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?