Use of Smartphones in Optical Experimentation
Use of Smartphones in Optical Experimentation

Yiping Zhao
Yoong Sheng Phang

Tutorial Texts in Optical Engineering
Volume TT124

SPIE PRESS
Bellingham, Washington USA
Contents

Preface
1 **Smartphones and Their Optical Sensors**
 1.1 History and Current Utilization in Education
 1.2 Smartphone Camera
 1.2.1 Optical sensor
 1.2.2 Adaptive optical system
 1.3 Using the Smartphone Camera in Experiments
 References

2 **Experimental Data Analysis**
 2.1 Experiments and Measurement Error
 2.1.1 General physics experimental procedure
 2.1.2 The experimental measurements
 2.1.3 Errors in measurements
 2.2 Numerical/Parameter Estimation
 2.2.1 Estimation of a direct measurement
 2.2.2 Estimation of a relationship
 2.3 Model Testing
 References

3 **Law of Reflection**
 3.1 Introduction
 3.2 Smartphone Experiment (Alec Cook and Ryan Pappafotis, 2015)
 3.2.1 General strategy
 3.2.2 Materials
 3.2.3 Experimental setup
 3.2.4 Experimental results

4 **Law of Refraction**
 4.1 Introduction
 4.2 Smartphone Experiment (Alec Cook and Ryan Pappafotis, 2015)
 4.2.1 General strategy
 4.2.2 Materials

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3</td>
<td>Experimental setup</td>
<td>42</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Experimental results</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>Image Formation</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>45</td>
</tr>
<tr>
<td>5.2</td>
<td>Smartphone Experiment (Michael Biddle and Robert Dawson, 2015; Yoong Sheng Phang, 2021)</td>
<td>47</td>
</tr>
<tr>
<td>5.2.1</td>
<td>General strategy</td>
<td>47</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Materials</td>
<td>47</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Experimental setup</td>
<td>48</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Experimental results</td>
<td>48</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Linear Polarization</td>
<td>51</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td>6.2</td>
<td>Smartphone Experiment (Sungjae Cho and Aojie Xue, 2019)</td>
<td>52</td>
</tr>
<tr>
<td>6.2.1</td>
<td>General strategy</td>
<td>52</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Materials</td>
<td>52</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Experimental setup</td>
<td>52</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Experimental results</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>Fresnel Equations</td>
<td>55</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>7.2</td>
<td>Smartphone Experiment (Graham McKinnon, 2020)</td>
<td>56</td>
</tr>
<tr>
<td>7.2.1</td>
<td>General strategy</td>
<td>56</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Materials</td>
<td>56</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Experimental setup</td>
<td>56</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Preliminary results</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>Brewster’s Angle</td>
<td>59</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>8.2</td>
<td>Smartphone Experiment (Robert Bull and Daniel Desena, 2019)</td>
<td>60</td>
</tr>
<tr>
<td>8.2.1</td>
<td>General strategy</td>
<td>60</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Materials</td>
<td>60</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Experimental setup</td>
<td>60</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Experimental results</td>
<td>61</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>Optical Rotation</td>
<td>63</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>9.2</td>
<td>Smartphone Experiment (Nicholas Kruegler, 2020)</td>
<td>64</td>
</tr>
<tr>
<td>9.2.1</td>
<td>General strategy</td>
<td>64</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Materials</td>
<td>64</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Experimental setup</td>
<td>64</td>
</tr>
</tbody>
</table>
10 Thin Film Interference 67
 10.1 Introduction 67
 10.2 Smartphone Experiment (Nicolas Lohner and Austin Baeckeroot, 2017) 69
 10.2.1 General strategy 69
 10.2.2 Materials 69
 10.2.3 Experimental setup 69
 10.2.4 Experimental results 70

11 Wedge Interference 71
 11.1 Introduction 71
 11.2 Smartphone Experiment (Graham McKinnon and Nicholas Brosnahan, 2020) 72
 11.2.1 General strategy 72
 11.2.2 Materials 72
 11.2.3 Experimental setup 72
 11.2.4 Experimental results 73

12 Diffraction from Gratings 75
 12.1 Introduction 75
 12.2 Smartphone Experiment I: Diffraction from an iPhone Screen (Zach Eidex and Clayton Oetting, 2018) 77
 12.2.1 General strategy 77
 12.2.2 Materials 77
 12.2.3 Experimental setup 77
 12.2.4 Experimental results 78
 12.3 Smartphone Experiment II: Diffraction from a Grating and a Hair (Nick Brosnahan, 2020) 79
 12.3.1 General Strategy 79
 12.3.2 Materials 79
 12.3.3 Experimental setup 79
 12.3.4 Experimental results 80

References 81

13 Structural Coloration of Butterfly Wings and Peacock Feathers 83
 13.1 Introduction 83
 13.2 Smartphone Experiment I: Diffraction in a Box—Scale Spacing of Morpho Butterfly Wings (Mary Lalak and Paul Brackman, 2014) 85
 13.2.1 General strategy 85
 13.2.2 Materials 85
 13.2.3 Experimental setup 85
 13.2.4 Experimental results 86
13.3 Smartphone Experiment II: Barbule Spacing of Peacock Feathers
(Caroline Doctor and Yuta Hagiya, 2019)
13.3.1 General strategy
13.3.2 Materials
13.3.3 Experimental setup
13.3.4 Experimental results
References

14 Optical Rangefinder Based on Gaussian Beam of Lasers
14.1 Introduction
14.2 Smartphone Experiment I: A Two-laser Optical Rangefinder (Elizabeth McMillan and Jacob Squires, 2014)
14.2.1 General strategy
14.2.2 Materials
14.2.3 Experimental setup
14.2.4 Experimental results
14.3 Smartphone Experiment II: Estimating the Beam Waist Parameter with a Single Laser (Joo Sung and Connor Skehan, 2015)
14.3.1 General strategy
14.3.2 Materials
14.3.3 Experimental setup
14.3.4 Experimental results

15 Monochromator
15.1 Introduction
15.2 Smartphone Experiment I: A Diffractive Monochromator (Nathan Neal, 2018)
15.2.1 General strategy
15.2.2 Materials
15.2.3 Experimental setup
15.2.4 Experimental results
15.3 Smartphone Experiment II: A Dispersive Monochromator (Myles Popa and Steven Handcock, 2016)
15.3.1 General strategy
15.3.2 Materials
15.3.3 Experimental setup
15.3.4 Experimental results

16 Optical Spectrometers
16.1 Introduction
16.2 Smartphone Experiment I: A Diffractive Emission Spectrometer (Helena Gien and David Pearson, 2016)
16.2.1 General strategy
16.2.2 Materials
16.2.3 Experimental setup 109
16.2.4 Experimental results 110
16.3 Smartphone Experiment II: Spectra of Different Combustion Sources (Ryan McArdle and Griffin Dangler, 2016) 112
16.3.1 General strategy 112
16.3.2 Materials 112
16.3.3 Experimental setup 112
16.3.4 Experimental results 113
Reference 114

17 Dispersion 115
17.1 Introduction 115
17.2 Smartphone Experiment (Eric Older and Mario Parra, 2018) 117
17.2.1 General strategy 117
17.2.2 Materials 117
17.2.3 Experimental setup 117
17.2.4 Experimental results 118
Reference 119

18 Beer’s Law 121
18.1 Introduction 121
18.2 Smartphone Experiment (Sean Krautheim and Emory Perry, 2018) 122
18.2.1 General strategy 122
18.2.2 Materials 122
18.2.3 Experimental setup 122
18.2.4 Experimental results 123

19 Optical Spectra of Incandescent Lightbulbs and LEDs 125
19.1 Introduction 125
19.2 Smartphone Experiment I: Spectral Radiance of an Incandescent Lightbulb (Tyler Christensen and Ryan Matuszak, 2017) 128
19.2.1 General strategy 128
19.2.2 Materials 129
19.2.3 Experimental setup 129
19.2.4 Experimental results 129
19.3 Smartphone Experiment II: Spectral Radiance of White LED Lightbulbs (Troy Crawford and Rachel Taylor, 2018) 130
19.3.1 General strategy 130
19.3.2 Materials 130
19.3.3 Experimental setup 130
19.3.4 Experimental results 131
References 132

20 Blackbody Radiation of the Sun 133
20.1 Introduction 133
20.2 Smartphone Experiment (Patrick Mullen and Connor Woods, 2015) 135
 20.2.1 General Strategy 135
 20.2.2 Materials 135
 20.2.3 Experimental setup 135
 20.2.4 Experimental results 135
References 136

21 Example Course Instructions for Smartphone-based Optical Labs 139
 21.1 General Lab Instructions 139
 21.1.1 Important notices for students 139
 21.1.2 Lab materials 139
 21.1.3 Lab instructions 140
 21.2 Polarization Labs 141
 21.2.1 Required lab materials 141
 21.2.2 Lab instruction 141
 21.2.3 Additional labs 142
 21.3 Reflection Labs 142
 21.3.1 Required lab materials 142
 21.3.2 Lab instructions 142
 21.3.3 Additional labs 143
 21.4 Interference Labs 143
 21.4.1 Required lab materials 143
 21.4.2 Lab instruction 144
 21.4.3 Additional labs 144
 21.5 Diffraction Labs 145
 21.5.1 Required lab materials 145
 21.5.2 Lab instruction 145
 21.6 Summary of Lab Results 145

Appendix I Materials Used in Labs 149

Appendix II Web Links and Smartphone Applications 151

Appendix III Introduction to ImageJ 153
 III.1 Starting ImageJ 153
 III.2 ImageJ Menu 153
 III.3 ImageJ Toolbar 154
 III.4 Image Analysis Example Using ImageJ 154
 Reference 158

Appendix IV Connecting the Laser Diode 159
Chapter 1
Smartphones and Their Optical Sensors

1.1 History and Current Utilization in Education

A smartphone is a handheld device that integrates the basic functions of a mobile phone with advanced computing capabilities. The concept of combining a telephone and a computer chip dates to the early 1970s when Motorola introduced the first handheld cellular mobile phones. However, these cell phones were hardly ergonomic and ran on low data rate networks at speeds of less than 100 Kb/s [1]. In 1994, the Simon Personal Communicator, which is widely regarded as the world’s first smartphone, was launched by IBM [2]. The Simon was the first phone to incorporate the functions of a cell phone with those of a personal digital assistant (PDA), allowing users to call, page, and fax from their cell phones [3]. The Simon was also the first to use a touchscreen and stylus and include other new features such as an address book, a calendar, a calculator, and an appointment scheduler. Access to the mobile web was introduced by the Nokia 9000 Communicator launched in 1996 [4]. In 2000, the first mobile phone camera was unveiled in Sharp’s J-SH04 model, which had a 0.3-megapixel (MP) resolution and allowed users to send images electronically. The deployment of 3G networks in 2001 resulted in bit rates that were high enough to accommodate the sending and receiving of photographs, video clips, and other media [5]. It was not until the launch of Apple’s iPhone in 2007 that the standards were set for the modern smartphone. For this reason, the history of smartphones has been classified into the pre-iPhone era (before 2007) and the post-iPhone era (after 2007) [6]. The iPhone brought hardware and sensors such as the accelerometer and the capacitive touchscreen into the mainstream, creating an interactive experience for the user [7]. Its iOS operating system also revolutionized internet applications on smartphones, introducing a high degree of portable accessibility and storage, and making them comparable to operating systems that run on a personal computer [8]. A year later in 2008, Google acquired Android, an open-source operating system, and licensed it to all handset...
smartphone/tablet hardware and interfaces to create point-of-care diagnostic tools or portable medical devices [18]. For example, smartphones have been integrated into powerful microscopes for image analysis, colorimetric detection, blood testing, and disease diagnostics [19–30]. In combination with nanotechnology, smartphones have also been modified for use as spectrometers for chemical and biological sensing [31]. Many do-it-yourself (DIY) enthusiast websites have also demonstrated the use of smartphones/tablets in electronics projects [32]. It is evident that besides using the communication and software capabilities of smartphones/tablets for conventional m-learning, their opto-electronic/MEMS-sensing capabilities can be exploited to build laboratory instruments for hands-on lab education.

1.2 Smartphone Camera

The most important smartphone component for the experimental applications in this book is its camera. The smartphone camera usually consists of two parts: the optical sensor array and the adaptive optical system, as shown in Fig. 1.1.

1.2.1 Optical sensor

The standard optical sensor used in smartphones is an active-pixel sensor called the complementary metal oxide semiconductor (CMOS). A CMOS sensor array is a silicon-based integrated circuit consisting of a two-dimensional (2D) grid of light-sensitive elements called photosites, as shown in Fig. 1.2. Each CMOS photosite contains a photodiode, a capacitor, and up to four transistors. The photodiode is the primary light-sensing component in the imaging system and is based on a reverse-biased p–n junction for capturing photogenerated electrons. The working principle of each photosite can be simply described as the following: according to quantum mechanics, the
1.3 Using the Smartphone Camera in Experiments

In this book, the smartphone camera is central to the experiments as a detector in several different contexts. To apply the smartphone camera to scientific experiments, there are several fundamental assumptions:

1. The sensor’s response to light intensity is linear: either the RGB values or the grayscale value is proportional to the light intensity provided that the photosite is not saturated.
2. All of the photosites in the sensor array are identical.
3. The spectral response of the sensors in the visible wavelength range is flat.
4. There is no image distortion.
5. The adaptive optical system can be treated as a single converging lens that can form a real image on the sensor array. The autofocus feature of the camera can adjust the effective focal length of the optical system so that the effective image distance of the camera is fixed; i.e., the distance between the sensor array surface and the effective lens is a constant for any image taken.
6. A scaling factor can be defined to convert the pixel length in a smartphone image to a real length.

The following precautions should also be taken during the experiments:

1. Avoid using the camera’s “auto” photography feature because it may automatically change the exposure time during consecutive image acquisition.
2. Avoid using flash photography during image acquisition.
3. Avoid high intensity of light flux because it will saturate the photosite(s).
4. Avoid using images that are very small (i.e., only a few pixels in size) for length calibration, wavelength calibration, or image identification.
5. Maintain a consistent smartphone orientation when taking images. In most smartphones, images taken with a vertically oriented smartphone will have different pixel dimensions than images taken with a horizontally oriented smartphone.
6. If a multi-camera system is used, select the standard wide-angle camera for experimentation.

References

Chapter 2
Experimental Data Analysis

2.1 Experiments and Measurement Error

2.1.1 General physics experimental procedure

Scientific experiments are used to evaluate a hypothesis or to measure a certain scientific quantity. They are crucial in advancing modern sciences and technologies. In particular, physics experiments are usually employed to establish a quantitative relationship among different physical parameters (e.g., the Cavendish experiment for measuring the force of gravity between masses, the measurement of electrostatic force as a function of test charge, etc.), to prove or confirm a particular theoretical prediction or hypothesis (e.g., general relativity, the existence of black holes, etc.), or to measure important physical constants (e.g., the speed of light in vacuum, the charge of an electron, Planck’s constant, etc.). In the 400 years of modern science (since Galileo Galilei, 1564–1642), rigorous guiding principles have been adopted for scientific experiments. In particular, a physics experiment should adhere to at least the following steps.

Step 1: The purpose of an experiment. The purpose of an experiment could be to measure a specific parameter, to evaluate a relationship/hypothesis, or to establish a correlation. For example, to obtain the value of g, the acceleration of gravity, an experiment should be designed with the purpose of performing such a measurement.

Step 2: The design of an experiment. Based on our knowledge of introductory physics (or high school physics), there are various methods for measuring the value of g, such as the investigation of a free-falling solid ball, the sliding of a block on a frictionless slope (or air track), or the measurement of the period of a pendulum. Among the three methods suggested, the pendulum method is quite reliable and simple because the period T of the oscillation of a pendulum only depends on the length l of the pendulum (see Fig. 2.1):

$$T = 2\pi \sqrt{\frac{l}{g}}$$

(2.1)
For a two-variable function \(z = f(x, y) \), with measured \(x \pm \sigma_x \) and \(y \pm \sigma_y \),

if \(z = x + y \), or \(x - y \),

\[
\sigma_z = \sqrt{\left(\frac{\partial f}{\partial x} \sigma_x \right)^2 + \left(\frac{\partial f}{\partial y} \sigma_y \right)^2} + \ldots .
\]

(2.6)

Thus, for Eq. 2.2, \(\sigma_g = 4\pi^2 \sqrt{\frac{\sigma_l}{T^2}} + \left(\frac{2l\sigma_T}{T^3} \right)^2 \).

(2.9)

As an example, if the measurements give \(l = 1.00 \pm 0.01 \) m and \(T = 2.0 \pm 0.05 \) s in a particular pendulum experiment, then \(\sigma_g \) is calculated to be 0.4 m/s\(^2\) according to Eq. 2.9. Thus, the reported \(g \) value for this measurement is \(g = 9.7 \pm 0.4 \) m/s\(^2\).

2.2 Numerical/Parameter Estimation

2.2.1 Estimation of a direct measurement

Due to errors and repeated measurements, it is important to know how to estimate a directly measured quantity. If random errors dominate the measurements, the following equations can be used to numerically estimate the mean \(\mu \) and the standard deviation \(\sigma \):

\[
\mu = \bar{x} = \frac{1}{N} \sum_{j=1}^{N} x_j ,
\]

(2.10)

\[
\sigma = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} (x_j - \bar{x})^2 },
\]

(2.11)

where \(N \) is the number of measurements and \(x_j \) is the value of the \(j \)th measurement; thus, the reported measurement value should be \(x_{\text{report}} = \mu \pm \sigma \) (unit).

Because random noise is intrinsic to any instrument or measurement, it is expected that even for the \(j \)th measurement, the reported \(x_j \) value should also
Equations 2.20–2.23 give the results for the least-squares fitting for a linear function. In many cases, the relationships measured in an experiment may not be linear. In these cases, nonlinear least-squares fitting is needed. To obtain the best-fitting parameters for nonlinear functions, two different strategies can be used: the model function can be converted into a linear function, so that the above linear least-squares fitting equations can be used for the converted function to determine the desired parameters; or, if the function cannot be converted to a linear function, some special methods can be used to estimate the optimized parameters (see Johnson [3]). The latter strategy involves mathematical knowledge beyond the undergraduate level; if interested, refer to [3] or other related literature. The first strategy depends on the detailed expression of the nonlinear function. For example, if a power function is used to model the $y–x$ relationship,

$$y = ax^b \ (a > 0),$$

(2.24)

where a and b are the fitting parameters; this power function can then be converted into a linear function by letting $X = \ln x$ and $Y = \ln y$, so that Eq. 2.24 becomes

$$Y = \ln a + bX.$$

(2.25)

Therefore, a linear least-squares fitting can be used for the $X–Y$ relationship in Eq. 2.25 to determine the parameters $\ln a$ and b. Many other nonlinear functions can also be converted to a linear function. Table 2.1 lists some representative functions and the corresponding conversions.

<table>
<thead>
<tr>
<th>Original function</th>
<th>Conversion</th>
<th>Equivalent linear function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = ae^{bx}$ ($a > 0$)</td>
<td>$X = x$ and $Y = \ln y$</td>
<td>$Y = \ln a + bX$</td>
</tr>
<tr>
<td>$y = ae^{bcx}$ ($a > 0$)</td>
<td>$X = x^2$ and $Y = \ln y$</td>
<td>$Y = \ln a + bX$</td>
</tr>
<tr>
<td>$y = ae^{bx^c}$ ($a > 0$)</td>
<td>$X = 1/x$ and $Y = \ln y$</td>
<td>$Y = \ln a + bX$</td>
</tr>
<tr>
<td>$y = ax^b + c$</td>
<td>$X = \ln x$ and $Y = \ln (y - c)$</td>
<td>$Y = \ln a + bX$</td>
</tr>
<tr>
<td>$y = \frac{x^a}{\sqrt{a}} + c$ ($a, c > 0$)</td>
<td>$X = 1/x$ and $Y = 1/(y - c)$</td>
<td>$Y = a + bX$</td>
</tr>
<tr>
<td>$y = \frac{1}{\sqrt{a}}$ ($a > 0$)</td>
<td>$X = x$ and $Y = 1/y$</td>
<td>$Y = b + aX$</td>
</tr>
</tbody>
</table>

2.3 Model Testing

Another important issue regarding experimental data analysis is how to assess the model used to fit the experimental data, i.e., whether the fitting function used is a good model to fit the experimental data. From the previous section, with the experimental data and a proposed model (relationship), a least-squares method can be used to give the best estimation for the corresponding
Chapter 3
Law of Reflection

3.1 Introduction
The law of reflection is a principle that describes a ray of light reflecting off a smooth surface. It states that when a ray strikes the surface, the angle of reflection θ_r is equal to the angle of incidence θ_i, i.e., $\theta_i = \theta_r$, as shown in Fig. 3.1. Notice that the angles θ_r and θ_i are defined with respect to the surface normal.

![Diagram of Law of Reflection](image)

Figure 3.1 The law of reflection.

3.2 Smartphone Experiment (Alec Cook and Ryan Pappafotis, 2015)

3.2.1 General strategy
In this experiment, the smartphone acts as an imaging device that records the incident and the reflected laser rays into and out of a mirror’s surface. After capturing photos at various laser incident angles, both the angle of incidence θ_i and the angle of reflection θ_r can be extracted from the image, and a plot of θ_r versus θ_i can be generated with a slope equal or close to 1, which demonstrates the law of reflection.
Chapter 4
Law of Refraction

4.1 Introduction
The law of refraction is the principle describing a ray of light that is incident from one optical medium to another optical medium at a smooth interface. The angle of incidence (θ_1) and the angle of refraction (θ_2) as shown in Fig. 4.1 obey Snell’s law, $n_1 \sin \theta_1 = n_2 \sin \theta_2$, which is determined by the refractive indices n_1 and n_2 of the two media. Notice that each angle is defined with respect to the surface normal.

![Law of refraction](image)

Figure 4.1 The law of refraction.

4.2 Smartphone Experiment (Alec Cook and Ryan Pappafotis, 2015)

4.2.1 General strategy
In this experiment, the smartphone acts as an imaging device for recording the incident and refracted laser beams at the air–glass interface. After capturing images at various incident angles, the angle of incidence θ_1 and the angle of
Chapter 6
Linear Polarization

6.1 Introduction

Light is a transverse electromagnetic (EM) wave in which the oscillation directions of the electric field and the magnetic field are perpendicular to its propagation direction. Linearly polarized light is an EM wave with a constant orientation direction for the oscillating electric field, wherein the orientation of its electric field defines the direction of the polarization. As shown in Fig. 6.1, a linearly polarized light with a polarization along the \(x \) direction and a propagation direction along the \(z \) axis can be written as

\[
\vec{E}_x = \hat{x}E_{x0} \cos(k_\lambda z - \omega t),
\]

where \(E_{x0} \) is the amplitude of the electric field, \(\hat{x} \) is the unit vector along the \(x \) axis, and \(k_\lambda \) and \(\omega \) are the wave number and angular frequency of the EM wave, respectively. The output of light sources such as the Sun, flashlights, and household lamps, are not linearly polarized, whereas a laser’s output, on the other hand, is linearly or partially polarized. One can use a polarizer to change unpolarized light into linearly polarized light. Every polarizer has a polarization axis identified by the manufacturer. An ideal polarizer only allows the component of the electric field parallel to its polarization axis to be fully transmitted. For instance, Fig. 6.1 depicts a polarizer whose polarization axis forms an angle \(\alpha \) with respect to the \(x \) axis. If a linearly polarized light propagates through the polarizer, the electric field \(\vec{E}_p \) transmitted through the polarizer is expressed as

![Figure 6.1](image_url)
\[\vec{E}_p = E_{x0} \cos \alpha (\hat{x} \cos \alpha - \hat{y} \sin \alpha) \cos (k \lambda z - \omega t). \]

(6.2)

Thus, the intensity \(I_p \) of the light passing through a linear polarizer can be written as

\[I_p(\alpha) = I_0 \cos^2 \alpha, \]

(6.3)

where \(I_0 = \frac{1}{2} c \varepsilon_0 E_{x0}^2 \) is the intensity of the incident light. Equation 6.3 is known as Malus’s law, and it describes the basic properties of a linearly polarized light transmitted through a polarizer.

6.2 Smartphone Experiment (Sungjae Cho and Aojie Xue, 2019)

6.2.1 General strategy

To demonstrate Malus’s law, two polarizers are used to measure the change of light intensity as a function of the relative angle of the polarization axes. The smartphone camera is used as a light intensity detector. One should ensure that the intensity of light does not saturate the camera’s highest intensity limit.

6.2.2 Materials

1. A smartphone
2. A laser pointer
3. A laser pointer holder
4. Two sheet polarizers
5. Two polarizer holders
6. A printed protractor
7. A smartphone holder

6.2.3 Experimental setup

The experimental setup is shown in Fig. 6.2 (more experimental setups can be found in Chapter 21). Depending on the dimension of the laser pointer, polarizer sheets, and the smartphone, three simple holders, as shown in Fig. 6.2, are designed and 3D printed. Both the holders for the laser pointer and the smartphone are U-shaped slots that allow items to fit snugly within them. A hole is designed in the smartphone holder to accommodate the smartphone camera. The holders for the polarizer sheets are rectangular frames with rectangular openings. The polarizer sheets are taped to these rectangular frames so that they can be removed and reattached conveniently. The orientation of one polarizer is changed using a protractor. In this setup, one should ensure that the center of the laser pointer, the hole in the smartphone holder, and the center of the rectangular opening in the polarizer holder are aligned and at the same height.
Chapter 10
Thin Film Interference

10.1 Introduction

When light shines onto a thin film sandwiched between two dielectric media, an interference pattern can be formed due to the reflection at these two interfaces when the two reflected beams merge together at a large distance from them. For example, the rainbow colors in soap bubbles are a result of thin film interference. As shown in Fig. 10.1(a), a thin film with a thickness \(d_{film} \) and a refractive index \(n_2 \) is sandwiched between two media with refractive indices \(n_1 \) and \(n_3 \), respectively. The light with an incident angle \(\theta_1 \) at the interface of media \(n_1 \) and \(n_2 \) reflects and transmits at the location \(A \). This reflected beam is denoted as Beam 1. The transmitted beam reflects at the interface of media \(n_2 \) and \(n_3 \) at the location \(B \) and emerges at location \(C \) of the \(n_1 \) and \(n_2 \) interface. This emerging beam is denoted as Beam 2. Both Beam 1 and Beam 2 are parallel to each other and can interfere with each other at a large distance away from the thin film surface. Because this interference occurs far away, a lens is needed to observe the fringes. Clearly, Beam 2 propagates an extra distance when both beams meet at location \(P \). Based on the geometric relationship between Beam 1 and Beam 2, the optical path length difference \(\Lambda \) between the two beams is

\[
\Lambda = 2n_2d_{film}\cos \theta_2. \tag{10.1}
\]

The bright interference fringe will form when \(\Lambda = m\lambda \), where \(m \) is an integer and \(\lambda \) is the wavelength of the light in vacuum (or air). Thus, the corresponding refractive angle \(\theta_2^m \) is

\[
d_{film}\cos \theta_2^m = \frac{m\lambda}{2n_2}. \tag{10.2}
\]

The refractive angle \(\theta_2^m \) is closely linked with the incident angle \(\theta_1^m \) by Snell’s law. Therefore, to form a thin film interference pattern, the incident light
Chapter 14
Optical Rangefinder Based on Gaussian Beam of Lasers

14.1 Introduction

Rangefinders have a variety of applications, from robotics to airborne topographic mapping. Most rangefinders in the market utilize complicated electronic and optical systems. For example, as shown in Fig. 14.1, an electro-optical rangefinder makes use of the transit time of an electromagnetic signal reflected from the target to estimate the distance between itself and a target. Other types of rangefinders, ultrasonic sensors, radar, and sonar, operate on similar principles. In fact, an optical rangefinder can also be designed based on the Gaussian beam property of a laser.

The spatial distribution of the intensity I of a single-mode (known as the TEM$_{00}$ mode) laser beam as a function of the radial distance r from the beam axis follows a Gaussian profile,

$$I(r) = I_0 e^{-2r^2/w^2}, \quad (14.1)$$

Figure 14.1 Electro-optical rangefinder: a laser beam travels at speed v_L from the exit port, reflects from the target, and enters the receiving port after time t.

91
calibration process, a series of photos of the two laser spots on a movable screen is taken when the screen is placed at different distances z from the rangefinder. The photos of the two laser spots on the screen are then analyzed by ImageJ software, the actual laser spot diameter $2w$ in each photo is determined, and the distance z_{measured} is extracted using Eq. 14.4. The actual distance z is also measured with a tape measure. Figure 14.5 plots z_{measured} versus z obtained in the experiment. Evidently, they follow a linear relationship, and the least-squares fitting gives a slope of 0.90 ± 0.05.

14.3 Smartphone Experiment II: Estimating the Beam Waist Parameter with a Single Laser (Joo Sung and Connor Skehan, 2015)

14.3.1 General strategy

In this single-laser optical rangefinder setup, the smartphone is used to take photos of the laser beam projection on a target from various distances. The images are used to calibrate a distance from the rangefinder to the target.

14.3.2 Materials

1. A smartphone
2. A red laser (650 nm)
3. LEGO®-constructed laser holder
4. A piece of white paper
5. A ruler
6. A cardboard backdrop

Figure 14.5 The plot of the extracted distance z_{measured} from the rangefinder versus the actual distance z. The data are fit with a linear function $z_{\text{measured}} = kz + B$. The extracted fit parameters are $k = 0.90 \pm 0.05$ and $B = 23 \pm 4$ cm.
Chapter 17
Dispersion

17.1 Introduction

According to Snell’s law, a light ray will bend when traveling from one medium into another because light travels at different speeds in these two media. Within a given medium, different colors of light also travel at different speeds because the refractive index \(n \) depends on the wavelength \(\lambda \) of light; i.e., \(n \) is a function of \(\lambda \). In most optical media, a longer wavelength of light corresponds to a smaller refractive index. This phenomenon is called dispersion and was demonstrated by Newton’s prism experiment in 1666, in which a white light incident on a glass prism generates a broad rainbow-colored light beam, as shown in Fig. 17.1. For glass or other transparent media, the dispersion relationship can be expressed by the Sellmeier equation [1],

\[
n^2 = A + B\left(1 - \frac{C}{\lambda^2}\right) + D\left(1 - \frac{E}{\lambda^2}\right), \tag{17.1}
\]

where \(\lambda \) is the wavelength and \(A, B, C, D, \) and \(E \) are called the Sellmeier coefficients.

The refractive index \(n \) of a medium can be determined using the angle of minimum deviation through a prism made of the same medium. As shown in Fig. 17.2, when a light beam (Beam 1) is incident on an isosceles triangular prism with a vertex angle \(\beta_v \) and refractive index \(n \), it refracts into the prism.

![Figure 17.1 Dispersion of a medium. (Left) Refractive index \(n \) of a medium as a function of wavelength \(\lambda \). (Right) Newton’s prism experiment.](image)
Chapter 21
Example Course Instructions for Smartphone-based Optical Labs

Below are example lab instructions given in the Introduction to Modern Optics class at the University of Georgia in the fall of 2020. At the beginning of the class, the students were instructed to learn the basics of the Python™ programming language by working through a Python tutorial on error analysis and data fitting. The labs followed this training. Detailed lab instructions are given below.

21.1 General Lab Instructions

21.1.1 Important notices for students

1. DO NOT shine the laser directly to anyone’s eyes.
2. DO NOT directly touch the surfaces of lab materials with bare fingers where light will interact.
3. If you observe dust or fingerprints on the surfaces of materials, use a lens cloth to clean them. DO NOT attempt to blow on them with your mouth.

21.1.2 Lab materials

The following packed lab materials (all purchased from Amazon) are provided to the students (see Fig. 21.1):

1. Two AA batteries (~$18 for a 24-count pack)
2. A battery case (3 V) with switch (~$10 for 8 cases)
3. A laser diode (3 V, 650 nm, 5 mW) (~$6.50 for 10 pieces)
4. Two polarizer sheets (~$13 for an A5 size, cut into 1 cm x 3 cm pieces with the polarization direction along the short side)
5. One 1000 line/mm grating (~$12 for 25 pieces)
polarizer is along the short edge (depending on the cut on the polarizer sheet; this must be confirmed by the instructor).

b. Measure both the reflected and transmitted intensity versus the incident angle θ_1. Students are encouraged to repeat each θ_1-related intensity measurement at least five times.

c. Use the Fresnel equation for reflection (Eq. 7.1 in Chapter 7) to fit the reflection data and extract the refractive index n_2 for glass.

d. Derive an equation based on the Fresnel equation for transmission (hint: there are two interfaces for transmission, the air–glass and glass–air interfaces), use it to fit the obtained transmission data, and obtain n_2.

2. Determine the Brewster angle at the air–glass interface (see Chapter 8):

a. Calculate the expected Brewster angle based on the refractive index obtained from the first lab.

b. Change the incident polarized light into p-polarization.

c. Measure the reflection at the air–glass interface with the p-polarized light in the neighborhood of the estimated Brewster angle (± 5 deg) with a fine adjustment of the incident angle (say, an increment of 1 or 0.5 deg).

d. Determine the Brewster angle with repeated measurements.

3. Write and submit a lab report manuscript based on these two experiments.

21.3.3 Additional labs

The following labs can also be carried out using the constructed lab setup, and students can add the results to their lab report:

1. Test the Fresnel equation for other materials, such as water, oil, acrylic sheets, or other plastic sheets.

2. Determine the refractive index of these materials using the Brewster angle.

21.4 Interference Labs

21.4.1 Required lab materials

Unfortunately, the laser beam from the laser diode is not coherent enough for the planned labs, so students use a He–Ne laser in the lab.

1. A smartphone
2. A He–Ne laser
3. Three glass slides
4. Multiple small-cut strips of printer paper
5. Two lenses
Yiping Zhao is a Distinguished Research Professor at the Department of Physics and Astronomy at the University of Georgia, where he has taught undergraduate physics courses and conducted nanotechnology-based research since 2002. He obtained his Ph.D. in Physics at Rensselaer Polytechnic Institute in 1999. He is a Fellow of SPIE and the American Vacuum Society (AVS). Professor Zhao’s research interests are nanostructure and thin film fabrication and characterization, plasmonics and metamaterials, chemical and biological sensors, nanophotocatalysts, nanomotors, and nanotechnology for disease treatment.

Yoong Sheng Phang is a Ph.D. student and National Science Foundation (NSF) Graduate Research Fellow in the Department of Physics at Harvard University. He received his B.S. degrees in Physics and Mathematics in 2022 at the University of Georgia, where he conducted undergraduate research on magnetic nanomotors and smartphone optics in Professor Zhao’s lab. His Ph.D. research is focused on experimental investigations of quantum materials.