1 Mathematical Preliminaries

We shall go through in this first chapter all of the mathematics needed for reading the rest of this book.

The reader is expected to have taken a one-year course in differential and integral calculus.

1.1 Mean-Value Theorems of Integral Calculus

First mean-value theorem of integral calculus
Let \(f(x) \) be continuous on \([a, b] \) and \(g(x) > 0 \) (or \(g(x) < 0 \)) in \([a, b] \).

Then,
\[
\int_a^b f(x)g(x)\,dx = f(x_1) \int_a^b g(x)\,dx,
\]
where \(x_1 \) is in \([a, b] \).

Proof
We shall prove the case for \(g(x) > 0 \); the case for \(g(x) < 0 \) is entirely analogous.

Since \(f(x) \) is continuous on \([a, b] \), it is bounded, i.e., there exist \(m \) and \(M \) such that \(m \leq f(x) \leq M \) for all \(x \) in \([a, b] \).

We further have \(mg(x) \leq f(x)g(x) \leq Mg(x) \) for all \(x \) in \([a, b] \) since \(g(x) > 0 \) for all \(x \) in \([a, b] \).

Hence,
\[
m \int_a^b g(x)\,dx \leq \int_a^b f(x)g(x)\,dx \leq M \int_a^b g(x)\,dx.
\]

\[
m \leq \frac{1}{L_g} \int_a^b f(x)g(x)\,dx \leq M; \quad L_g = \int_a^b g(x)\,dx. \tag{1}
\]

Since \(f(x) \) is continuous on \([a, b] \), it must evolve continuously between \(m \) and \(M \).

Hence, for any \(y_1 \) satisfying \(m \leq y_1 \leq M \), there exists an \(x_1 \) in \([a, b] \) such that \(f(x_1) = y_1 \).

Now, apply the above statement to (1).

Let
\[
\frac{1}{L_g} \int_a^b f(x)g(x)\,dx = y_1.
\]
Since $m \leq y_1 \leq M$, there exists x_1 in $[a, b]$ such that $f(x_1) = y_1$.

Hence,
\[
\frac{1}{b-a} \int_a^b f(x)g(x)\,dx = f(x_1).
\]

That is,
\[
\int_a^b f(x)g(x)\,dx = f(x_1) \int_a^b g(x)\,dx.
\]

In particular, if $g(x) = 1$, we have
\[
\int_a^b f(x)\,dx = f(x_1) \int_a^b 1\,dx = f(x_1)(b - a).
\]

Second mean-value theorem of integral calculus

Let $f(x)$ be monotonically increasing (or decreasing) on $[a, b]$ and $g(x)$ be integrable on $[a, b]$.

Then,
\[
\int_a^b f(x)g(x)\,dx = f(a) \int_a^{x_1} g(x)\,dx + f(b) \int_{x_1}^b g(x)\,dx,
\]

where x_1 is in $[a, b]$.

Proof

We assume first that $f(x)$ is monotonically increasing, implying that $f'(x) > 0$ on $[a, b]$.

Let
\[
G(x) = \int_a^x g(x)\,dx + c.
\]

Hence, G is differentiable and thus continuous on $[a, b]$.

\[
\begin{align*}
\int_a^b f(x)g(x)\,dx &= \int_a^b f(x)\,dG(x) \\
&= f(x)G(x) \bigg|_a^b - \int_a^b G(x)f'(x)\,dx \\
&= f(b)G(b) - f(a)G(a) - G(x_1)[f(b) - f(a)] \\
&= f(a)[G(x_1) - G(a)] + f(b)[G(b) - G(x_1)]
\end{align*}
\]
\[f(a) \int_a^{x_1} g(x) \, dx + f(b) \int_{x_1}^b g(x) \, dx. \]

\section*{1.2 The Delta Function}

\subsection*{Definition}
We define the delta function, denoted conventionally as $\delta(x)$, to be the limit of a sequence of functions in the sense that, if

\[\lim_{n \to \infty} \int_{\alpha}^{b} D_n(x) \, dx = \frac{1}{2}, \quad b > 0 \]

or

\[\lim_{n \to \infty} \int_{b}^{\alpha} D_n(x) \, dx = \frac{1}{2}, \quad b < 0, \]

then

\[\lim_{n \to \infty} D_n(x) = \delta(x). \]

\subsection*{Claim}
\[\lim_{n \to \infty} \int_{c}^{d} D_n(x) \, dx = 0, \]

where $0 < c < d$ or $c < d < 0$.

\subsection*{Proof}
For $0 < c < d$,

\[\lim_{n \to \infty} \int_{c}^{d} D_n(x) \, dx = \lim_{n \to \infty} \int_{0^+}^{d} D_n(x) \, dx - \lim_{n \to \infty} \int_{0^+}^{c} D_n(x) \, dx = \frac{1}{2} - \frac{1}{2} = 0. \]

The case for $c < d < 0$ can be proved in a similar way.

\subsection*{1.2.1 Representations of the delta function}

1.)
One representation of the delta function is
\[
\frac{\sin(\beta x)}{\pi x}, \quad \beta \rightarrow \infty.
\]

We use \(\beta \) instead of \(n \) as the index of the sequence of functions since it is not restricted to integers.

This is because

\[
\lim_{\beta \to \infty} \int_{0^+}^{b} \frac{\sin(\beta x)}{\pi x} \, dx = \lim_{\beta \to \infty} \frac{1}{\pi} \int_{0^+}^{b} \frac{\sin(x^\wedge)}{x^\wedge} \, dx = \frac{1}{\pi} \int_{0^+}^{\infty} \frac{\sin(x^\wedge)}{x^\wedge} \, dx = \frac{1}{\pi} \frac{\pi}{2} = \frac{1}{2}.
\]

The evaluation of the last integral is detailed in Appendix 1.1.

To show the reader this trend, we plot the representation for \(\beta \) from 1 (blue) to 5 (red) in steps of 1, as shown in Fig. 1.2-1.

2.)

Another representation of the delta function is

\[
\frac{\beta e^{-\beta^2 x^2}}{\sqrt{\pi}}, \quad \beta \rightarrow \infty.
\]

This is because

\[
\lim_{\beta \to \infty} \int_{0^+}^{b} \frac{\beta e^{-\beta^2 x^2}}{\sqrt{\pi}} \, dx = \lim_{\beta \to \infty} \frac{1}{\sqrt{\pi}} \int_{0^+}^{b} e^{-x^2} \, dx = \frac{1}{\sqrt{\pi}} \int_{0^+}^{\infty} e^{-x^2} \, dx = \frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2} = \frac{1}{2}.
\]

Figure 1.2-1
3.)
Still another representation of the delta function is
\[
\frac{1}{2\pi} \int_{-\beta}^{\beta} e^{ikx} dk, \quad \beta \to \infty.
\]
This is because, by performing the integration
\[
\frac{1}{2\pi} \int_{-\beta}^{\beta} e^{ikx} dk = \frac{1}{2\pi} \frac{e^{i\beta x} - e^{-i\beta x}}{ix} = \frac{\sin(\beta x)}{\pi x},
\]
we can reduce it to the first representation above.

4.)
Our final example of the representation of the delta function is the following sequence of polynomials:
\[
p_n(x) = a_n (1 - x^2)^n, \quad |x| \leq 1; \quad p_n(x) = 0, \quad |x| > 1, \quad n = 1, 2, 3, \ldots,
\]
where \(a_n \) is a normalization factor defined by
\[
a_n \int_{0^+}^{1} (1 - x^2)^n dx = \frac{1}{2}, \quad n = 1, 2, 3, \ldots.
\]
Proof
When \(0 < b < 1 \), consider the following integral
\[
\int_{0^+}^{b} p_n(x) dx = a_n \int_{0^+}^{b} (1 - x^2)^n dx
\]
\[
= a_n \int_{0^+}^{1} (1 - x^2)^n dx - a_n \int_{b}^{1} (1 - x^2)^n dx
\]
\[
= \frac{1}{2} - a_n \int_{b}^{1} (1 - x^2)^n dx.
\]
On one hand,
\[
\frac{1}{a_n} \equiv 2 \int_{0^+}^{1} (1 - x^2)^n dx > 2 \int_{0^+}^{1} (1 - x)^n dx = 2 \left. \frac{-(1-x)^{n+1}}{n+1} \right|_{0^+}^{1} = \frac{2}{n+1},
\]
\[
a_n < \frac{n+1}{2}.
\]
On the other hand,
\[
\int_{b}^{1}(1 - x^2)^n dx < (1 - b^2)^n(1 - b) < (1 - b^2)^n.
\]

Hence,
\[
a_n \int_{b}^{1}(1 - x^2)^n dx < \frac{n + 1}{2}(1 - b^2)^n \rightarrow 0, \quad n \rightarrow \infty.
\]

Then,
\[
\int_{0^+}^{b} p_n(x)dx = \frac{1}{2}
\]

When \(b \geq 1 \),
\[
\int_{0^+}^{b} p_n(x)dx = \int_{0^+}^{1} p_n(x)dx = a_n \int_{0^+}^{1}(1 - x^2)^n dx = \frac{1}{2}
\]
by the definition of \(p_n(x) \) and \(a_n \). Therefore,
\[
\lim_{n \to \infty} \int_{0^+}^{b} a_n (1 - x^2)^n dx = \frac{1}{2}, \quad b > 0,
\]
which means \(p_n(x), \quad n \to \infty \) is indeed a representation of the \(\delta \) function.

1.2.2 Properties of the delta function

1.) Sifting
When \(b > 0 \), if \(f(x) \) is continuous on \((0, b]\) and \(f(x)|_{x \to 0^+} = f(0^+) \), then
\[
\int_{0^+}^{b} f(x)\delta(x)dx = \frac{1}{2}f(0^+).
\]
Similarly, when \(b < 0 \), if \(f(x) \) is continuous on \([b, 0)\) and \(f(x)|_{x \to 0^-} = f(0^-) \), then
\[
\int_{b}^{0^-} f(x)\delta(x)dx = \frac{1}{2}f(0^-).
\]
In particular,
\[
\int_{-\infty}^{\infty} f(x) \delta(x) \, dx = \frac{1}{2} [f(0^-) + f(0^+)],
\]

which is equal to \(f(0) \) if \(f(x) \) is continuous at \(x = 0 \).

Proof

We first prove the case of \(b > 0 \).

Since \(f(x) \) is continuous, there exists a small enough \(b_1 \) such that \(f(x) \) is monotonic on \((0, b_1]\).

We then apply the second mean-value theorem of integral calculus and get

\[
\int_{0^+}^{b_1} f(x) \delta(x) \, dx = \lim_{n \to \infty} \int_{0^+}^{b_1} f(x) D_n(x) \, dx
\]

\[
= \lim_{n \to \infty} f(0^+) \int_{0^+}^{b_1} D_n(x) \, dx + \lim_{n \to \infty} f(b_1) \int_{b_1}^{b_1} D_n(x) \, dx
\]

\[
= f(0^+) \cdot \frac{1}{2} + f(b_1) \cdot 0.
\]

For \(b > 0 \) in general, we write

\[
\int_{0^+}^{b_1} f(x) \delta(x) \, dx = \int_{0^+}^{b_1} f(x) \delta(x) \, dx + \int_{b_1}^{b} f(x) \delta(x) \, dx = \frac{1}{2} f(0^+) + \int_{b_1}^{b} f(x) \delta(x) \, dx.
\]

Next, we divide \([b_1, b]\) into several sub-intervals in which \(f(x) \) is monotonic.

Let one such sub-interval be \([b_{k-1}, b_k]\).

Then,

\[
\int_{b_{k-1}}^{b_k} f(x) \delta(x) \, dx = \lim_{n \to \infty} \int_{b_{k-1}}^{b_k} f(x) D_n(x) \, dx
\]

\[
= \lim_{n \to \infty} f(b_{k-1}) \int_{b_{k-1}}^{b_k} D_n(x) \, dx + \lim_{n \to \infty} f(b_k) \int_{b_k}^{b_k} D_n(x) \, dx
\]

\[
= f(b_{k-1}) \cdot 0 + f(b_k) \cdot 0.
\]

Hence, adding up all such integrals, we have

\[
\int_{0^+}^{b_1} f(x) \delta(x) \, dx = 0.
\]

Therefore, when \(b > 0 \),

\[
\int_{0^+}^{b} f(x) \delta(x) \, dx = \frac{1}{2} f(0^+).
\]
Similarly, when \(b < 0, \)
\[
\int_{b}^{0} f(x)\delta(x)dx = \frac{1}{2} f(0^-).
\]

If \(f(x) \) is continuous at \(x = 0, \)
\[
\int_{-\infty}^{\infty} f(x)\delta(x)dx = \frac{1}{2} [f(0^-) + f(0^+)] = f(0).
\]

\[\blacksquare\]

Letting in the above equation \(f(x) = g(x + c), \) we have
\[
\int_{-\infty}^{\infty} g(x + c)\delta(x)dx = g(c).
\]

By change of variable \(x + c = x^\alpha, \) we obtain
\[
\int_{-\infty}^{\infty} g(x^\alpha)\delta(x^\alpha - c)dx^\alpha = g(c).
\]

The above expression is the most common form for expressing the sifting property of the delta function.

2.)

Scaling
\[
\int_{-\infty}^{\infty} f(x)\delta(ax)dx = \frac{1}{|a|} f(0).
\]

Proof
If \(a > 0, \)
\[
\int_{-\infty}^{\infty} f(x)\delta(ax)dx = \int_{-\infty}^{\infty} f(x^\alpha/a)\delta(x^\alpha) \frac{dx^\alpha}{a}
\]
\[
= \frac{1}{a} f(0).
\]

If \(a < 0, \)
\[
\int_{-\infty}^{\infty} f(x)\delta(ax)dx = \int_{-\infty}^{\infty} f(x^\alpha/a)\delta(x^\alpha) \frac{dx^\alpha}{a}
\]
\[
= -\frac{1}{a} \int_{-\infty}^{\infty} f(x^\alpha/a)\delta(x^\alpha)dx^\alpha.
\]
\[= -\frac{1}{a} f(0). \]

3.)

Functional

\[\delta[g(x)] = \sum \frac{1}{|g'(x_i)|} \delta(x - x_i). \]

Proof

\(\delta(x) \) is non-trivial only in the neighborhood of \(x = 0 \).

Thus, for \(\delta[g(x)] \), we can only focus on those tiny intervals centered at \(x_i \)'s where \(g(x_i) = 0 \), and on each such interval, approximate \(g(x) \) by a linear function, i.e.,

\(g(x) \approx g(x_i) + g'(x_i)(x - x_i). \)

Hence,

\[\int_{-\infty}^{\infty} f(x) \delta[g(x)] dx = \sum \int_{-\infty}^{\infty} f(x) \delta[g'(x_i)(x - x_i)] dx. \]

\[= \sum \frac{1}{|g'(x_i)|} f(x_i). \]

We may then state, equivalently,

\[\delta[g(x)] = \sum \frac{1}{|g'(x_i)|} \delta(x - x_i). \]

4.)

Differentiation

\[\int_{-\infty}^{\infty} f(x) \delta'(x - c) dx = -f'(c). \]

Proof

\[\int_{-\infty}^{\infty} f(x) \delta'(x - c) dx = \lim_{\Delta \to 0} \int_{-\infty}^{\infty} f(x) \frac{\delta(x + \Delta/2 - c) - \delta(x - \Delta/2 - c)}{\Delta} dx \]

\[= \lim_{\Delta \to 0} \frac{f(c - \Delta/2) - f(c + \Delta/2)}{\Delta} \]

\[= -\lim_{\Delta \to 0} \frac{f(c + \Delta/2) - f(c - \Delta/2)}{\Delta} \]

\[= -f'(c). \]
1.3 Weierstrass’ Approximation Theorem

Weierstrass’ approximation theorem states that any function which is continuous in an interval can be approximated uniformly by polynomials, i.e., $1, x, x^2, \ldots$, in this interval.

Weierstrass’ approximation theorem can be explained by employing the sifting property of the delta function we have just proved.
Assume that $f(x)$ is continuous in $[c, d]$.
Then,
\[
f(x) = \int_{c-}^{d+} f(u) \delta(u - x) \, du
\]
\[
= \lim_{n \to \infty} a_n \int_{c-}^{d+} f(u)[1 - (u - x)^2]^n \, du,
\]
by employing the polynomial representation of the delta function.
Here, $c^- < c < d < d^+$.
Why is the integration domain $[c^-, d^+]$ larger than $[c, d]$?
If we integrate over $[c, d]$, then at the boundary, e.g., at c, we only get $f(c)/2$, not $f(c)$.
After performing the integration in the above equation, we obtain a polynomial of order $2n$.
We need to choose a proper n to meet the required error tolerance.

For an explicit proof of Weierstrass’ approximation theorem, see Appendix 1.2.

1.4 Fourier Transform

We define the Fourier transform as
\[
\mathcal{F}[U(x)] \equiv \int_{-\infty}^{\infty} U(x) e^{-ikx} \, dx = \bar{U}(k)
\]
and the inverse Fourier transform as
\[
\mathcal{F}^{-1}[ar{U}(k)] \equiv \int_{-\infty}^{\infty} \bar{U}(k) e^{ikx} \frac{dk}{2\pi}
\]
$U(x)$ and $\bar{U}(k)$ are called Fourier transform pairs.
The functions $U(x)$ and $\bar{U}(k)$ are generally complex; however, the variables x and k are always real unless otherwise stated.
1.4.1 Fourier transform theorems

1.) Fourier integral theorem
\[\mathcal{F}^{-1}\left[\mathcal{F}[U(x)]\right] = U(x). \]

Proof
\[\mathcal{F}^{-1}\left[\mathcal{F}[U(x)]\right] = \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \int_{-\infty}^{\infty} dx_1 e^{-ikx_1} U(x_1) \]
\[= \int_{-\infty}^{\infty} dx_1 U(x_1) \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{-ik(x_1-x)} \]
\[= \int_{-\infty}^{\infty} U(x_1)\delta(x_1-x)dx_1 \]
\[= U(x). \]

If \(U(x) \) is discontinuous at \(x \), replace \(\delta(x_1-x) \) by \(D_n(x_1-x) \) in the second-to-last equation and let \(n \to \infty \).

We see that the newly obtained \(U(x) \) is the average of \(U(x) \) in the neighborhood of \(x \).

2.) Linearity theorem
\[\mathcal{F}[a_1 U_1(x) + a_2 U_2(x)] = a_1 \mathcal{F}(k) + a_2 \mathcal{F}(k). \]

3.) Scaling theorem
\[\mathcal{F}[U(ax)] = \frac{1}{|a|} \bar{U}(k/a). \]

Proof
If \(a > 0 \),
\[\mathcal{F}[U(ax)] = \int_{-\infty}^{\infty} U(ax)e^{-ikx}dx \]
\[ax = x_1 \]
\[= \int_{-\infty}^{\infty} U(x_1)e^{-ikx_1}dx_1 \frac{dx_1}{a} \]
\[= \frac{1}{|a|} \mathcal{F}[U(x_1)] \]
\[
= \frac{1}{a} \int_{-\infty}^{\infty} U(x_1)e^{-\frac{k}{a}x_1}dx_1
\]

\[
= \frac{1}{a} \tilde{U}(k/a).
\]

If \(a < 0 \),

\[
\mathcal{F}[U(ax)] = \int_{-\infty}^{\infty} U(ax)e^{-ikx}dx
\]

\(ax = x_1 \)

\[
\int_{-\infty}^{\infty} U(x_1)e^{-\frac{ik}{a}x_1}dx_1 \quad \frac{1}{a}
\]

\[
= -\frac{1}{a} \int_{-\infty}^{\infty} U(x_1)e^{-\frac{i}{a}x_1}dx_1
\]

\[
= -\frac{1}{a} \tilde{U}(k/a).
\]

\[
\mathcal{F}[U(x - c)] = e^{-ikc} \tilde{U}(k).
\]

Proof

\[
\mathcal{F}[U(x - c)] = \int_{-\infty}^{\infty} U(x - c)e^{-ikx}dx
\]

\[
= e^{-ikc} \int_{-\infty}^{\infty} U(x - c)e^{-ik(x - c)}d(x - c)
\]

\(x - c = x_1 \)

\[
= e^{-ikc} \int_{-\infty}^{\infty} U(x_1)e^{-ikx_1}dx_1
\]

\[
= e^{-ikc} \tilde{U}(k).
\]
5.) \textbf{Rayleigh's (Parseval's) theorem}

\[\int_{-\infty}^{\infty} |U(x)|^2 dx = \int_{-\infty}^{\infty} |\bar{U}(k)|^2 \frac{dk}{2\pi} \]

\textbf{Proof}

\[
\int_{-\infty}^{\infty} |U(x)|^2 dx = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \bar{U}(k) \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} e^{-ik_1x}\bar{U}^*(k_1) \\
= \int_{-\infty}^{\infty} \frac{dk}{2\pi} \bar{U}(k) \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \bar{U}^*(k_1) \int_{-\infty}^{\infty} dx e^{-i(k_1-k)x} \\
= \int_{-\infty}^{\infty} \frac{dk}{2\pi} \bar{U}(k) \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \bar{U}^*(k_1) 2\pi \delta(k_1 - k) \\
= \int_{-\infty}^{\infty} |\bar{U}(k)|^2 \frac{dk}{2\pi}.
\]

\[
\]

6.) \textbf{Convolution theorem}

The convolution of two functions is defined as

\[U(x) \otimes V(x) \equiv \int_{-\infty}^{\infty} U(x - x_1)V(x_1) dx_1 \]

\[x - x_1 = x_2 \]

\[= \int_{-\infty}^{\infty} V(x - x_2)U(x_2)(-dx_2) \]

\[= \int_{-\infty}^{\infty} V(x - x_2)U(x_2)dx_2 \]

\[= V(x) \otimes U(x). \]

Then,

\[\mathcal{F}\{U(x) \otimes V(x)\} = \int_{-\infty}^{\infty} dx e^{-ikx} \int_{-\infty}^{\infty} dx_1 U(x - x_1)V(x_1) \]
\[= \int_{-\infty}^{\infty} dx_1 e^{-ikx_1} V(x_1) \int_{-\infty}^{\infty} d(x-x_1) e^{-ik(x-x_1)} U(x-x_1) \]
\[= \tilde{V}(k) \tilde{U}(k). \]

Besides,

\[\mathcal{F}[U(x)V(x)] = \int_{-\infty}^{\infty} U(x)V(x)e^{-ikx} dx \]
\[= \int_{-\infty}^{\infty} dx e^{-ikx} \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} e^{ik_1x} \tilde{U}(k_1) \int_{-\infty}^{\infty} \frac{dk_2}{2\pi} e^{ik_2x} \tilde{V}(k_2) \]
\[= \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \tilde{U}(k_1) \int_{-\infty}^{\infty} \frac{dk_2}{2\pi} \tilde{V}(k_2) \int_{-\infty}^{\infty} dx e^{-i(k-k_1-k_2)x} \]
\[= \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \tilde{U}(k_1) \int_{-\infty}^{\infty} \frac{dk_2}{2\pi} \tilde{V}(k_2) 2\pi \delta(k-k_1-k_2) \]

either

\[= \int_{-\infty}^{\infty} \frac{dk_1}{2\pi} \tilde{V}(k-k_1) \tilde{U}(k_1) \]
\[= \tilde{V}(k) \otimes \tilde{U}(k) \]
or

\[= \int_{-\infty}^{\infty} \frac{dk_2}{2\pi} \tilde{U}(k-k_2) \tilde{V}(k_2). \]
\[= \tilde{U}(k) \otimes \tilde{V}(k). \]

7.)

Complex conjugate

\[\mathcal{F}[U^*(x)] = \int_{-\infty}^{\infty} U^*(x)e^{-ikx} dx \]
\[= \left[\int_{-\infty}^{\infty} U(x)e^{ikx} dx \right]^* \]

\[x = -x_1 \]
\[
\begin{align*}
&= \left[\int_{-\infty}^{\infty} U(-x_1) e^{-ikx_1} (-dx_1) \right]^* \\
&= \left[\int_{-\infty}^{\infty} U(-x_1) e^{-ikx_1} dx_1 \right]^* \\
&= [\mathcal{F}[U(-x)]]^* \\
&\neq [\mathcal{F}[U(x)]]^*.
\end{align*}
\]
That is, the operations of the Fourier transform and complex conjugate do not commute unless \(U(-x) = U(x) \), i.e., for functions with inversion symmetry.

8.)

Autocorrelation theorem

\[
\mathcal{F}[U(x)\otimes U^*(-x)] = \mathcal{F}[U(x)]\mathcal{F}[U^*(x)]^* = \bar{U}(k)\bar{U}^*(k) = |\bar{U}(k)|^2.
\]

In addition,

\[
\mathcal{F}[|U(x)|^2] = \mathcal{F}[U(x)U^*(x)] = \mathcal{F}[U(x)]\otimes\mathcal{F}[U^*(x)] = \bar{U}(k)\otimes\bar{U}^*(-k).
\]

1.4.2 **Useful Fourier transform pairs**

1.)

Fourier transform of the rectangle function

The rectangle function in the real space of width \(W_x \) is defined as

\[
\text{Rect}(x/W_x) = \begin{cases}
1, & |x| < W_x/2 \\
1/2, & |x| = W_x/2 \\
0, & |x| > W_x/2.
\end{cases}
\]

Finding its Fourier transform is straightforward:

\[
\mathcal{F}[\text{Rect}(x/W_x)] = \int_{-W_x/2}^{W_x/2} e^{-ikx} dx
\]

\[
= e^{-ikx}\bigg|_{x=-W_x/2}^{x=W_x/2} - \left. \frac{e^{-ikx} - e^{ikx}}{-ik} \right|_{x=-W_x/2}^{x=W_x/2}
\]

\[
= \frac{-i2 \sin(kW_x/2)}{-ik}
\]

\[= i \frac{\sin(kW_x/2)}{k/2} = i \frac{2\sin(kW_x/2)}{W_x}.
\]

\[
= i \frac{2\sin(kW_x/2)}{W_x}.
\]
\[\frac{\sin(kW_k/2)}{kW_k/2} = W_k \text{Sinc}(kW_k/2).\]

The rectangular function in the frequency space may be employed more frequently. Similarly, it can be shown that

\[\mathcal{F}^{-1}[\text{Rect}(k/W_k)] = \frac{W_k}{2\pi} \text{Sinc}(W_kx/2).\]

2.)

Fourier transform of the comb function

The comb function is defined as

\[\delta_p(x) = \sum_{n=-\infty}^{\infty} \delta(x-np),\]

which is a periodic function of period \(p\).

We want to compute its Fourier transform.

\[\tilde{\delta}_p(k) = \int_{-\infty}^{\infty} \delta_p(x)e^{-ikx}dx\]

\[= \sum_{n=-\infty}^{\infty} e^{-i(knp)}\]

\[= \sum_{n=-\infty}^{\infty} e^{i(knp)}\]

\(e^{i(kp)}\) is a periodic function of period \(2\pi/p\).

\(e^{i(k2p)}\) is a periodic function of period \(2\pi/2p\), which is also a periodic function of period \(2\pi/p\).

...

Therefore, \(\tilde{\delta}_p(k)\) is also a periodic function of period \(2\pi/p\).

\[= \lim_{N \to \infty} \sum_{n=-N}^{N} (e^{ikp})^n \]

\[= \lim_{N \to \infty} \left[\frac{(e^{ikp})^{N+1} - 1}{e^{ikp} - 1}\right] \]

\[= \lim_{N \to \infty} \left[\frac{(e^{ikp})^{N+1} - (e^{ikp})^{-N}}{e^{ikp} - 1}\right] \]

\[= \left(e^{ikp}\right)^{N+1} - \left(e^{ikp}\right)^{-N} = \left[e^{ikp}\right]^{1/2} \left[\left[e^{ikp}\right]^{N+1/2} - \left[e^{ikp}\right]^{-\left(\frac{N+1}{2}\right)}\right]\]
Figure 1.4-1

\[e^{ikp} - 1 = \left[e^{ikp} \right]^{1/2} \left[\left(e^{ikp} \right)^{-1/2} - \left(e^{ikp} \right)^{-1/2} \right] \]

\[= \lim_{N \to \infty} \frac{\sin[(N + 1/2)kp]}{\sin(kp/2)} \]

\[\equiv \lim_{N \to \infty} D_N(k). \]

\(D_N(k) \) may diverge at \(k = m(2\pi/p) \) since its denominator equals zero there.

Before going into the mathematical details, we first plot, in Fig. 1.4-1, \(D_N(k) \) versus \(k \) for \(N = 1, 2, 3 \).

(Actually, we plot \(D_N(k) \) versus \(\overline{k} \), defined by \(k = (2\pi/p)\overline{k} \).)

It is seen that as \(N \) increases, the main lobes at \(k = m(2\pi/p) \) become higher (though narrower), whereas the side lobes become lower (if normalized by the main lobe at \(k = 0 \)).

Yes, your guess is correct.

It is an infinite series of delta functions.

We sketch a formal proof below.

Proof

First, we consider

\[\int_{-\pi/p}^{\pi/p} f(k)D_N(k)dk = \int_{-\pi/p}^{\pi/p} f(k) \frac{\sin[(N + 1/2)kp]}{\sin(kp/2)} dk \]

\((N + 1/2)kp = \nu \)

\[= \int_{-(N+1/2)\pi}^{(N+1/2)\pi} f\left[\nu/(N + 1/2)p \right] \frac{\sin \nu}{\sin[v/2(N + 1/2)](N + 1/2)p} d\nu \]

\[= \frac{2}{p} \int_{-(N+1/2)\pi}^{(N+1/2)\pi} f\left[\nu/(N + 1/2)p \right] \frac{\sin \nu / \nu}{\sin[v/2(N + 1/2)]/\left[\nu/2(N + 1/2)\right]} d\nu \]
\[
\lim_{N \to \infty} \frac{\sin[v/(N+1/2)]}{v/(N+1/2)} = \lim_{v_1 \to 0} \frac{\sin v_1}{v_1} = 1
\]

\[
\to \frac{2}{p} \int_{-\infty}^{\infty} f(0) \frac{\sin v}{v} dv, \quad N \to \infty
\]

\[
= \frac{4}{p} f(0) \int_{0}^{\infty} \frac{\sin v}{v} dv
\]

\[
\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}
\]

\[
= \frac{2\pi}{p} f(0).
\]

Since \(D_N(k) \) is a periodic function of period \(2\pi/p \),

\[
\hat{\delta}_p(k) = \lim_{N \to \infty} D_N(k) = \frac{2\pi}{p} \sum_{m=-\infty}^{\infty} \delta[k - m(2\pi/p)].
\]

\[\blacksquare\]

Computing the inverse Fourier transform of the above equation, we obtain

\[
\delta_p(x) = \int_{-\infty}^{\infty} \hat{\delta}_p(k) e^{ikx} dk = \frac{1}{p} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta[k - m(2\pi/p)] e^{ikx} dk
\]

\[
= \frac{1}{p} \sum_{m=-\infty}^{\infty} e^{im \frac{2\pi}{p} x}.
\]

In summary,

\[
\delta_p(x) = \sum_{n=-\infty}^{\infty} \delta(x - np) = \frac{1}{p} \sum_{m=-\infty}^{\infty} e^{im \frac{2\pi}{p} x};
\]

\[
\hat{\delta}_p(k) = \sum_{n=-\infty}^{\infty} e^{i k \cdot np} = \frac{2\pi}{p} \sum_{m=-\infty}^{\infty} \delta[k - m(2\pi/p)].
\]

(1)