Conference 11770 > Paper 11770-12
Paper 11770-12

Modelling of soliton and platicon generation in the self-injection locking regime

Abstract

The effect of the self-injection locking (SIL) is well-known for many years in the theory of oscillations, radiophysics and optics and is actively used for the stabilization and spectral purification of the corresponding generators. Last years it has attracted even more attention due to the possibility of using such stabilized lasers as pump sources for the realization of the nonlinear processes in the same microresonators, simultaneously used for laser linewidth reduction. However, existing linear theories of the self-injection locking unable to predict soliton generation because enough value of the pump frequency detuning can not be obtained in the linear regime. The development of full nonlinear theory becomes even more important, since recently generation of the solitonic pulses at normal group velocity dispersion has been demonstrated in the self-injection locking regime We developed an original model describing the process of the frequency comb generation in the self-injection locking regime and performed numerical simulation of this process. Generation of the dissipative Kerr solitons in the self-injection locking regime at anomalous group velocity dispersion was studied numerically. Different regimes of the soliton excitation depending on the locking phase, backscattering parameter and pump power were identified. It was also proposed and confirmed numerically that self-injection locking may provide an easy way for the generation of the frequency combs at normal group velocity dispersion. Generation of platicons was demonstrated and studied in detail. Parameter range providing platicon excitation was found.

Presenter

Russian Quantum Ctr. (Russian Federation)
Dr. Nikita Kondratiev graduated ftom the Physics faculty of the Moscow State University in 2015. Since 2014 Nikita has worked in the Russian Quantum Center in the laboratory of coherent microoptics and radiophotonics under Michael Gorodetsky supervision. He successfully defended the PhD thesis named "Analysis of thermal noises in multilayer coatings and whispering gallery mode microcavities" in 2016. His areas of expertise are radiophotonics, optical resonators, nonlinear optics, thermal noises and numerical modelling. He is an author of articles on solitonic pulses and frequency combs in whispering gallery mode resonators, thermal noises in optics and laser self-injection locking.
Presenter/Author
Russian Quantum Ctr. (Russian Federation)
Author
Russian Quantum Ctr. (Russian Federation)
Author
Russian Quantum Ctr. (Russian Federation)
Author
Nikita Dmitriev
Russian Quantum Ctr. (Russian Federation)
Author
M.V. Lomonosov Moscow State Univ. (Russian Federation)