• Explore Membership
  • Student Services
  • Early Career Resources
  • Corporate Membership
  • SPIE Professional Magazine
  • Archives
    Contact SPIE Professional
    Editorial Calendar and Advertising
Print PageEmail Page
SPIE Professional October 2016

New application for nanophotonic structures in converting thermal energy to electricity

By Loucas Tsakalakos

cover of Journal of Photonics for Energy

Conversion of thermal energy into electrical energy is an important area of research and development. There are many distributed heat sources from which thermal energy is simply wasted. A technology that could effectively harness this thermal energy could increase the overall efficiency of engines, turbines, etc.

Most research to date has focused on thermoelectrics and thermophotovoltaics as a means to convert thermal energy.

However, exciting new work by SPIE member Brhayllan Mora-Ventura and colleagues in Mexico and Spain has highlighted an alternate approach to leveraging the thermoelectric (Seebeck) effect by combining high Seebeck coefficient bi-metals with nanoantennas.

In “Responsivity and resonant properties of dipole, bowtie, and spiral Seebeck nanoantennas,” published in the Journal of Photonics for Energy in May, the team performed detailed finite-element modeling in the range of 10 to 150 THz of such nanoantennas. They first showed that the resonance frequency of the nanoantennas is shifted from what would be expected by classical antenna theory, an important design insight.

The team then studied the responsivity of various metals within a fixed nanoantenna geometry (3 micron dipole) and showed the expected current levels for each metal.

Three different antenna geometries were compared (dipole, bowtie, and square-spiral), and it was shown that the bowtie nanoantenna is the most desired geometry due to the highest thermal gradients induced in the structure.

Finally, the paper showed that combining the dipole nanoantenna with nickel and titanium, the highest voltage responsivity may be obtained. The researchers further suggest that Ni-Ti bowtie nanoantennas are a leading path for further research and design.

Coauthors of the open-access article are Ramón Díaz de León and Jorge Flores, SPIE Fellow Javier Alda, and SPIE members Guillermo García-Torales and Francisco J. González.

Source: dx.doi.org/10.1117/1.JPE. 6.024501

Loucas Tsakalakos is manager of the photonics lab at GE Global Research and an associate editor of the Journal of Photonics for Energy
–Loucas Tsakalakos
is manager of the photonics lab at GE Global Research and an associate editor of the Journal of Photonics for Energy.

DOI: 10.1117/2.4201610.12

Ready for the benefits of individual SPIE membership?
Join or Renew
Already a member? Get access to member-only content.
Sign In

October 2016 Advertisers

logo for American Elements

Logo for Applied Optics Research

Ecole Polytechnique Federale de Lausanne

logo for LaCroix Optical

Optimax logo

Photon Engineering logo

logo for Software Spectra

SPIE Professional supports the NPI

NPI supporter badge

Like SPIE on Facebook

SPIE Facebook page

The SPIE Facebook page is a great place to find and share news on optics programs and photonics events.