The test concepts presented apply to CCD/CMOS cameras, intensified CCD cameras, night vision goggles, SWIR cameras, and infrared cameras. Using a systems approach, this course describes all the quantitative and qualitative metrics that are used to characterize imaging system performance. Laboratory performance parameters discussed include resolution, responsivity, random noise, uniformity, fixed pattern noise, modulation transfer function (MTF), contrast transfer function (CTF), minimum resolvable temperature (MRT), and the minimum resolvable contrast (MRC). The eye’s spatial and temporal integration allows perception of images whose signal-to-noise ratio (SNR) is less than unity. Since most imaging systems spatially sample the scene, sampling artifacts affects all measurements and significantly affect MRT and MTF test results. Phasing effects are illustrated. Data analysis techniques are independent of the sensor selected (i.e., wavelength independent). The difference lies in the input variable name (watts, lumens, or delta-T) and the output variable name (volts, lumens, or observer response).
Field tests are extremely difficult. Differences between lab and field test approaches are provided with an estimate of anticipated field results. Real world target are significantly different than laboratory targets and the illumination is quite different. This course describes the most common laboratory test techniques. Equally important is identifying those parameters that adversely affect results. Believable test results depend upon specifications that are testable, unambiguous, and provide a true measure of performance.
SPIE online courses are on-demand and self-paced, with access for one year. For more information:
ONLINE COURSES
The test concepts presented apply to CCD/CMOS cameras, intensified CCD cameras, night vision goggles, SWIR cameras, and infrared cameras. Using a systems approach, this course describes all the quantitative and qualitative metrics that are used to characterize imaging system performance. Laboratory performance parameters discussed include resolution, responsivity, random noise, uniformity, fixed pattern noise, modulation transfer function (MTF), contrast transfer function (CTF), minimum resolvable temperature (MRT), and the minimum resolvable contrast (MRC). The eye’s spatial and temporal integration allows perception of images whose signal-to-noise ratio (SNR) is less than unity. Since most imaging systems spatially sample the scene, sampling artifacts affects all measurements and significantly affect MRT and MTF test results. Phasing effects are illustrated. Data analysis techniques are independent of the sensor selected (i.e., wavelength independent). The difference lies in the input variable name (watts, lumens, or delta-T) and the output variable name (volts, lumens, or observer response). ::
Field tests are extremely difficult. Differences between lab and field test approaches are provided with an estimate of anticipated field results. Real world target are significantly different than laboratory targets and the illumination is quite different. This course describes the most common laboratory test techniques. Equally important is identifying those parameters that adversely affect results. Believable test results depend upon specifications that are testable, unambiguous, and provide a true measure of performance.