Table of Contents

Glossary	Х
Fundamentals of Geometrical Optics	1
Sign Conventions	1
Basic Concepts	2
Optical Path Length	3
Refraction and Reflection	4
Optical Spaces	5
Gaussian Optics	6
Refractive and Reflective Surfaces	7
Newtonian Equations	8
Gaussian Equations	9
Longitudinal Magnification	10
Nodal Points	11
Object-Image Zones	12
Gaussian Reduction	13
Thick and Thin Lenses	14
Vertex Distances	15
Thin Lens Imaging	16
Object-Image Conjugates	17
Afocal Systems	18
Paraxial Optics	19
Paraxial Raytrace	20
YNU Raytrace Worksheet	21
Cassegrain Objective Example	22
Stops and Pupils	24
Marginal and Chief Rays	25
Pupil Locations	26
Field of View	27
Lagrange Invariant	28
Numerical Aperture and F-Number	29
Ray Bundles	30
Vignetting	31
More Vignetting	32
Telecentricity	33
Double Telecentricity	34
Depth of Focus and Depth of Field	35
Hyperfocal Distance and Scheimpflug Condition	36

Optical Systems	37
Parity and Plane Mirrors	37
Systems of Plane Mirrors	38
Prism Systems	39
More Prism Systems	40
Image Rotation and Erection Prisms	41
Plane Parallel Plates	42
Objectives	43
Zoom Lenses	44
Magnifiers	45
Keplerian Telescope	46
Galilean Telescope	47
Field Lenses	48
Eyepieces	49
Relays	50
Microscopes	51
Microscope Terminology	52
Viewfinders	53
Single Lens Reflex and Triangulation	54
Illumination Systems	55
Diffuse Illumination	56
Integrating Spheres and Bars	57
Projection Condenser System	58
Source Mirrors	59
Overhead Projector	60
Schlieren and Dark Field Systems	61
Chromatic Effects	62
Dispersion	62
Optical Glass	63
Material Properties	64
Dispersing Prisms	65
Thin Prisms	66
Thin Prism Dispersion and Achromatization	67
Chromatic Aberration	68
Achromatic Doublet	69

Table of Contents (cont.)

Table of	of Contents	(cont.)
----------	-------------	---------

Monochromatic Aberrations	70
Monochromatic Aberrations	70
Rays and Wavefronts	71
Spot Diagrams	72
Wavefront Expansion	73
Tilt and Defocus	74
Spherical Aberration	75
Spherical Aberration and Defocus	76
Coma	77
Astigmatism	78
Field Curvature	79
Distortion	80
Combinations of Aberrations	81
Conics and Aspherics	82
Mirror-Based Telescopes	83
Appendices	84
Radiometry	84
Radiative Transfer	85
Photometry	86
Sources	87
Airy Disk	88
Diffraction and Aberrations	89
Eye	90
Retina and Schematic Eyes	91
Ophthalmic Terminology	92
More Ophthalmic Terminology	93
Film and Detector Formats	94
Photographic Systems	95
Scanners	96
Rainbows and Blue Skies	97
Matrix Methods	98
Common Matrices	99
Trigonometric Identities	100
Equation Summary	101
Bibliography	107
Index	111

Glossary

Unprimed variables and symbols are in object space. Primed variables and symbols are in image space.

Frequently used variables and symbols:

ricquentiy	used variables and symbols.
a	Aperture radius
A, A'	Object and image areas
B'	Image plane blur criterion
BFD	Back focal distance
c	Speed of light
C	Curvature
$\mathbf{C}\mathbf{C}$	Center of curvature
d, d'	Front and rear principal plane shifts
D	Diopters
D	Diameter
D	Airy disk diameter
DOF	Depth of focus, geometrical
E, E_V	Irradiance and illuminance
EFL	Effective focal length
EP	Entrance pupil
\mathbf{ER}	Eye relief
f, f_E	Focal length or effective focal length
f_F, f'_R	Front and rear focal lengths
f/#	F-number
$f/\#_W$	Working F-number
δf	Longitudinal chromatic aberration
F, F′	Front and rear focal points
FFD	Front focal distance
FFOV	Full field of view
FOB	Fractional object
FOV	Field of view
h, h'	Object and image heights
H	Lagrange invariant
H	Normalized field height
H, H_V	Exposure
HFOV	Half field of view
Ι	Optical invariant
I, I_V	Intensity and luminous intensity
L	Object-to-image distance
L, L_V	Radiance and luminance

Geometrical Optics

 n_2

θ,

Only one color is

Refraction and Reflection

n₁

 θ_1

Snell's law of refraction:

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Topic title, centered and bolded

The incident ray, the refracted ray and the surface normal are coplanar.

When propagating through a series of parallel interfaces, the quantity $n \sin \theta$ is conserved. Figures have no numbers or

Law of reflection:

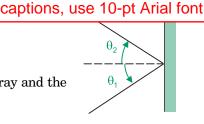
$$\theta_1 = -\theta_2$$

The incident ray, the reflected ray and the surface normal are coplanar.

Reflection equals refraction with $n_2 = -n_1$.

Total internal reflection TIR occurs when the angle of incidence of a ray propagating from a higher index medium to a lower index medium exceeds the **critical angle**.

$$\sin\theta_C = \frac{n_2}{n_1}$$


At the critical angle, the angle of refraction θ_2 equals 90°

The **reflectance** ρ of an interface between n_1 and n_2 is given by the **Fresnel reflection coefficients**. At normal incidence with no absorption,

$$\rho = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

The entire page is filled using 10-pt Century Schoolbook font, with no footnotes or endnotes, and it addresses one topic.

	0			
	n	0		
	n_1	θ_C		
	1.3	50.3°		
	1.4	45.6°		
	1.5	41.8°		
	1.6	38.7°		
	1.7	36.0°		
	1.8	33.7°		
	1.9	31.8°		
	2.0	30.0°		
I				
Critical angles				
for $n_2 = 1.0$				
	32			

Key terms in bold

arallel interfaces, the

Equation Summary

General equations (index, refraction, mirrors, etc.):

 $OPL = nd \qquad \rho = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$ $n_1 \sin \theta_1 = n_2 \sin \theta_2 \qquad \sin \theta_C = \frac{n_2}{n_1}$ $\tau = \frac{t}{n} \qquad \omega = nu$ $\gamma = 2\alpha \qquad d \approx \left(\frac{n - 1}{n}\right)t = t - \tau$

Power and focal length:

$$\phi = (n'-n)C = \frac{(n'-n)}{R}$$
 $f_E \equiv \frac{1}{\phi} = -\frac{f_F}{n} = \frac{f'_R}{n'}$

Newtonian equations (z, z' measured from F, F'):

$$\frac{z}{n} = \frac{f_E}{m} \qquad \qquad \frac{z'}{n'} = -mf_E \qquad \qquad \left(\frac{z}{n}\right)\left(\frac{z'}{n'}\right) = -f_E^2$$

Gaussian equations and imaging (z, z' measured from P, P'):

$$\frac{z}{n} = \frac{(1-m)}{m} f_E \qquad \frac{z'}{n'} = (1-m) f_E \qquad m = \frac{z'/n'}{z/n} = \frac{\omega}{\omega'}$$
$$\frac{n'}{z'} = \frac{n}{z} + \frac{1}{f_E} \qquad \frac{\Delta z'/n'}{\Delta z/n} = m_1 m_2 \quad \overline{m} = \left(\frac{n'}{n}\right) m^2$$
$$z_{PN} = z'_{PN} = f_F + f'_R \qquad m_N = -\frac{f_F}{f'_R} = \frac{n}{n'}$$

Gaussian reduction:

$$\phi = \phi_1 + \phi_2 - \phi_1 \phi_2 \tau \qquad \frac{d}{n} = \frac{\phi_2}{\phi} \tau \qquad \frac{d'}{n'} = -\frac{\phi_1}{\phi} \tau$$
$$BFD = f'_R + d' \qquad FFD = f_F + d$$

M. Bass, Handbook of Optics, Vol. I, McGraw-Hill, New York, 1995.

R. W. Boyd, *Radiometry and the Detection of Optical Radiation*, Wiley, New York, 1983.

Bureau of Naval Personnel, Basic Optics and Optical Instruments, Dover, New York, 1969.

R. Ditteon, Modern Geometrical Optics, Wiley, New York, 1998.

R. E. Fischer and B. Tadic-Galeb, *Optical System Design*, McGraw-Hill, New York, 2000.

N. Goldberg, Camera Technology: The Dark Side of the Lens, Academic, San Diego, 1992.

D. S. Goodman, "Basic Optical Instruments," in *Geometrical* and Instrumental Optics, D. Malacara, Ed., Academic, San Diego, 1988.

J. W. Goodman, *Introduction to Fourier Optics*, McGraw-Hill, New York, 1968.

Hoya Optical Glass Catalog, Hoya Corporation, Tokyo, Japan. F. A. Jenkins and H. E. White, *Fundamentals of Optics*, McGraw-Hill, New York, 1976.

B. K. Johnson, *Optics and Optical Instruments*, Dover, New York, 1960.

M. J. Kidger, *Fundamental Optical Design*, SPIE Press, Bellingham, WA, 2002.

H. C. King, The History of the Telescope, Dover, New York, 1979. L. Levi, Applied Optics – A Guide to Optical System Design, Volumes I and II, Wiley, New York, 1968 and 1980.

John E. Greivenkamp is a Professor at the Optical Sciences Center of the University of Arizona where he has taught courses in optical engineering since 1991. After receiving a Ph.D. from the Optical Sciences Center in 1980, he was employed by Eastman Kodak. He is a fellow of SPIE–The International Society for Optical Engineering, of the Optical Society of America, and he has

served a member of the National Research Council Committee on Optical Science and Engineering (COSE).

Professor Greivenkamp's research interests include interferometry and optical testing, optical fabrication, ophthalmic optics, optical measurement systems, optical systems design, and the optics of electronic imaging systems.