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ABSTRACT
As the concepts of machine learning and artificial intelligence continue to grow in importance in 
the context of internet related applications it is still in its infancy when it comes to process con-
trol within the semiconductor industry. Especially the branch of mask manufacturing presents a 
challenge to the concepts of machine learning since the business process intrinsically induces 
pronounced product variability on the background of small plate numbers.

In this paper we present the architectural set up of a machine learning algorithm which suc-
cessfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this 
basic set up followed by an analysis of its statistical properties is given. The machine learning set 
up for mask manufacturing involves two learning steps: an initial step which identifies and classi-
fies the basic global CD patterns of a process. These results form the basis for the extraction of 
an optimized training set via balanced sampling. A second learning step uses this training set to 
obtain the local as well as global CD relationships induced by the manufacturing process. Using 
two production motivated examples we show how this approach is flexible and powerful enough to 
deal with the exacting demands of mask manufacturing. In one example we show how dedicated 
covariates can be used in conjunction with increased spatial resolution of the CD map model in 
order to deal with pathological CD effects at the mask boundary. The other example shows how 
the model set up enables strategies for dealing tool specific CD signature differences. In this case 
the balanced sampling enables a process control scheme which allows usage of the full tool park 
within the specified tight tolerance budget.

Overall, this paper shows that the current rapid developments off the machine learning algorithms 
can be successfully used within the context of semiconductor manufacturing.

1. Introduction
The recent advances in machine learning have spurned numerous developments which already 
have a substantial impact on our daily lives. The most prominent examples can be found in the 
speech recognition software1 as well as adaptive websites and recommender systems. As these 

Figure 1. Machine learning is a subfield of artificial intelligence. Deep learning is a powerful technique within the 
field of machine learning. 
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“No Matter Where You Go; There 
You Are”. 
Thomas Struck, Infineon
With this quotation, Paul Ackmann concluded his presentation of the history of the 
“Integral Nature of Masks through five decades” at the 33rd European Mask and 
Lithography Conference (EMLC 2017), chaired by Uwe Behringer. 

EMLC 2017 was held on June 27th -28th at the Hilton Hotel in Dresden. The big 
audience proved the relevance of EMLC even in the sluggish photomask business 
in Europe. Once again EMLC brought together more than one hundred and fifty 
scientists, researchers, engineers, and managers for extensive knowledge exchange 
about the latest developments in mask and lithography technologies and future 
strategies. Forty seven papers were presented within nine sessions over two and a 
half days. For the first time, technical tutorials were also offered, covering lithography 
and EUV.

During the conference, a technical exhibition helped provide a forum for discussion 
and networking within the community. 

The welcome speech on “The Power of Power Semiconductors” was given by Mathias 
Kamolz from Infineon Technologies. Typically, the challenges for power products 
are not small feature sizes. Beside others, the processing of thin wafers (down to 
a 60µm thickness) is a major challenge especially for 300mm. Thanks to IoT, there 
is high demand for different applications and many different power chip designs. 
Note from the editor: High number of designs results in high demand for reticles and 
masks which benefits the mask making industry. In the 1st keynote ASML Jim Wiley 
gave an insight into “The status and challenges of the EUV photomask ecosystem”. 
According to Jim, EUV is much more disrupting for the mask shop than for the wafer 
fab. The short-term EUV mask infrastructure challenges are: availability of actinic 
blank inspection, defect management without access to actinic patterned mask 
defect inspection, adequate supply of pellicles and low defect blanks, and the mask 
volume ramp itself. Long-term, EUV masks will be as routine as DUV masks are today. 
For 2017 Jim predicts a healthy mask eco system. As is normally done each year, 
best papers from BACUS 2016 and PMJ 2017 were also presented. In addition, Kurt 
Ronse from IMEC was invited to show the “Recent EUV developments at IMEC” which 
included a focus on bringing EUV “from lab to fab”.

IMS and NuFlare showed their progress for the development of a multi beam mask 
writer. NuFlare recently shipped their first beta tool to target the market for 5nm 
node. IMS developed the MBM101. Based on a Jeol platform, several high volume 
manufacturing tools have been shipped ready for 7nm node. In conjunction with multi 
beam writing, processing and compressing of big data volume becomes important. 

No surprise: Once more EMLC focused on the technology “race” between EUV and 
NIL. Therefore, multiple papers focused on these two candidates for next generation 
lithography. There is still a race ongoing, but different applications will probably allow 
the coexistence of both techniques in the long run. New aspects for a photo mask 
conference were considered in the session about the growing market for Non-IC 
application photomasks. Contrary to EUV, there is already a lot of revenue generated 
in the industry by Non-IC photomasks. That’s why this topic is a “must have” of future 
conferences.

The topic of the final session was machine learning and its deployment to 
continuously improve the manufacturing process. Within this context “Splendidly 
blended: “A machine learning set up for CDU control” was honored as best paper. And 
it was a highlight from scientific and entertainment point of view. 

“No matter where you go; there you are”: This statement defines also the outlook 
for EUV which will be the next and last step in the optical train. In case you are 
wondering…this quotation comes from the eighties SiFi movie “Buckaroo Banzai”. 

Hope to see you at the next EMLC 2018 in Grenoble!



applications are ubiquitous in the context of smart phones it es-
capes the users due to the presence that these are very cleverly 
designed systems. Thus the power of the current machine learn-
ing algorithms cannot necessarily easily be exemplified by these 
applications.

However, there are popular landmarks where machine learn-
ing algorithms have recently proven their prowess in mastering 
domains of human intelligence. The first hallmark of this type is 
most likely the victory of the chess computer “Deep Blue”2 against 
the then reigning world chess champion Gary Kasparov. Chess 
with its 8x8 fields and 32 counters is a game of simple rules with 
an immense complexity. This complexity results out of the vast 
amount of legal chess positions (around 1040) which result of the 
movement patterns of the counters. The game is a game of perfect 
information, which means that each player is informed of all the 
events that have previously occurred, including the “initialization 
event” of the game. In the case of Chess, the optimal game strategy 
could in principle be computed by both players at any stage of the 
match. However, such a computational task is beyond the abilities 
of humans and task is in certain situations replaced by the percep-
tion and analysis of patterns and power lines. The vast number 
of possible chess positions is the reason why Claude Shannon 
proposed in the year 1950 that in setting up a computer for Chess 
the simple forward computation of all possible moves should be 
supplemented by a selection process3. In the case of Deep Blue 
the massive computational power was supplemented by a large 
Grandmaster game database. This combination constituted the 
base for selection of valid moves for “Deep Blue”.

This victory, however, was at that time only partially considered 

as a machine learning success, as no learning mechanism was 
implemented in the set up. Thus the ancient game of Go with the 
substantially more legal positions of 2.08*10170 was considered as 
a real litmus test for machine learning. In 2015 the general believe 
was that it would take another 5-10 years for having a computer 
with enough power to win against a reigning Go champion. This 
estimate was based on the assumption that the software would 
be set up in a manner similar to “Deep Blue”. As it turned out 
the 9th Dan holding Go player Lee Sedol lost to the Go machine 
“AlphaGo” in 2016. The key points in the “AlphaGo” set up are 
a Monte Carlo tree search guided by a value & policy network 
implemented using a deep neural network technology as well as 
constant learning cycles of the software4.

These two major successes of machine learning in the field of 
games of perfect information were closely followed by a third mile-
stone for machine learning concepts when the poker machine “Li-
bratus” won against four poker professionals a 20 day tournament 
with 120,000 played hands. The set up of the machine learning 
algorithm for “Libratus” relies on a combination of counter factual 
regret minimization and a regret matching algorithm5. This set up 
proves to be highly adaptable to games of imperfect information 
such as poker. Games of imperfect information are character-
ized by the fact that each player is not perfectly informed of all 
the events that have occurred in the course of the game. In this 
implementation the learning phase of “Libratus” was performed 

Figure 2. The two tools induce a subtle yet significant difference in the CD signatures. The average signature performance of tool 1 is depicted in the left panel. 
The average CD signature performance of tool 2 – shown in the right panel – is similar but more pronounced. Main differences are found at the upper boundary 
and in the lower right corner. The variation mode as identified in a PCA illustrates this observation (middle panel). Two compensation approaches are tested: a 
map based on a balanced sample of both tools thus either enabling production flexibility or a tool separation based approach.

Table 1. Typical parameters which have a substantial impact on global 
CD signatures and variation patterns. A principal component analysis 
identifies the patterns, which are classified by clustering. The relation 
towards the process parameters is identified by standard correlation 
analysis techniques. The tool parameter entry is marked bold face to 
highlight the use case for tool mismatches.

Table 2. Typical parameters exerting a CD influence on the global 
and the local level. These parameters are used as covariates in the 
supervised learning step for setting up a CD compensation model. 
The tool parameter line is marked grey as a common compensation 
approach for both tools is tested.
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in the nights between the match days. Significant improvement 
of the software during the tournament was noted and reported 
by the opponents. These results immediately prompt the question 
as to the relation of machine learning to the vast field of artificial 
intelligence which is depicted in figure 1. Machine learning is fast 
growing subfield of artificial intelligence, largely contributing to the 
overall growth of the field.

The brief journey along the major milestones of machine learning 
in the context of classic games shows on the one side the enor-
mous potential of modern machine learning set ups and on the 
other side that the machine learning set up needs to be tailored 
to the needs of the learning task. This paper discusses how the 
concepts of machine learning were used in the context of mask 
manufacturing in order to control the uniformity of the critical 
dimensions (CDU control). The set up is detailed together with its 
motivation and how the set up enables the use for dealing with 
production problems such as modest tool mismatches as well as 
the efficient modeling of short range boundary effects.

2. Architecture of the CD Map Control Model 

2.1 The parameter space
Meeting the demands on critical dimensions (CD) in mask manu-
facturing is of critical importance for the lithographical performance 
of each mask in the waver production process. Thus the control 
of the CD uniformity (CDU) is one of the key objectives for the 
mask manufacturing process. The contributions to the CDU of a 
mask can in general be decomposed into a systematic and a noise 
contribution6,7. The process control mechanism discussed in this 
paper acts on the long range systematic contributions of the CD 
uniformity. The basic set up of the machine learning concept relies 
on a sequential combination of a principal component analysis8 
followed by a recursive partitioning of the data9,10. The resulting 
decision tree is utilized for a spatially resolved prediction of the CD 
deviations at positions x and y over the mask11. This systematic 
CD deviation is than utilized as input for the electron beam (EBM) 
writer. The EBM writer thus modulates electron dose and proximity 
effect corrections accordingly for optimal CDU results. In general 

Figure 3. Model performance of the balanced model obtained by blending the auxiliary information into a balanced sample for model training. Model validation 
shows a good performance in the compensation residual (left panel) and the area under curve (AUC in the middle panel). The model quality plane shows a 
scatter plot of both values. Good model performance is given when the data lies in the lower right quadrant.

Figure 4. Model performance of the model with tool dedicated compensation maps. The performance for the compensation residual is only 0.1nm better than 
for the model obtained by the balanced sample (consider the 95% capability in the left panel). Also the area under curve performance is only marginally better 
than for the model based on the balanced sampling (middle panel).
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the frame work within which a machine learning set up operates 
in mask manufacturing is given by:
a) 	A high variability of the learning data in the presence of a small 

product number,
b) 	A need for quick model updates based on limited amounts of 

training data,
c) 	The ability to mitigate modest process mismatches between 

tools and processes.
Any machine learning set up for CDU control needs to fulfill these 

requirements to a certain extent. The remainder of this paper will 
describe in detail how the particular set up serves to fulfill these 
requirements.

The CD(x,y) distribution across a mask is the results of a complex 
non-linear interaction of global influence parameters such as tool 
geometries, average mask clear-field and mask geometry with local 
influence parameters such as loading transitions, feature variations 
and boundary effects. This leads to the following formulation:

       CD i(x,y) = f [g(x,y,p i
1 ),x,y,p i

2] + νxy    (1) 		

where “i” is a mask index, and p1 and p2 are the corresponding 
parameter vectors of global and local influence parameters. The 
noise contribution is denoted by νxy. A common approximation of 
this function is obtained by assuming that the overall CD(x,y) dis-
tribution can be described by a linear superposition of a function 
describing the influence of global effects gG and local effects fL:

       CD i(x,y) = fL(x,y,p i
2) + gG(x,y,p i

1 ) + νxy    

The equation (2) is simplified when considering a large mask 
ensemble where due to the pronounced design variations the 
local contributions fL are averaged out. Thus for the purposes of 
learning the typical global patterns of a mask process we can use 
the following approximation:

<CD i(x,y)> = <f L(x,y,p i
2)> + <gG(x,y,p i

1 )> + <νxy>   

       ~ <gG(x,y,p i
1 )>     (4) 

The first step of our learning task is to learn the typical global 
CD signatures <gG>, so that i) outlier can be identified, ii) typical 
signatures can be classified and iii) the variation patterns are ob-
tained. To this end we use the unsupervised learning method of 
a principal component analysis to enable the extraction of points 
i) through iii). This principal components analysis (PCA) reduces 

the dimensionality of the problem substantially thus leading to a 
representation of each signature by the PCA scores of the as-
sociated modes of variation12,13. This means that outliers as well 
as typical signatures can by identified by standard techniques. 
The relationship to global process parameters as mentioned in 
table 1) is also easily accessible by standard correlation analysis. 
In this learning step the observed typical signature patterns are 
tested for association with the parameter values: is a certain tool 
combination responsible for a special CD signature, or is the re-
sist age related to the expression of a certain CD signature. This 
type of analysis reaches beyond the unsupervised learning step, 
as the target quantity of CD is related to the coefficients of the 
PCA. The specific analysis steps are a hierarchical clustering step 
where outliers are identified using a cut off value of 95% of the 
overall height. Following this, we identify typical signatures using 
a “kmeans” clustering. The association with the global parameters 
is done using a partitioning analysis. This results in a characteriza-
tion of each mask data set with auxiliary data reflecting its outlier 
characterization, signature type and tool/process relation.

Based on this data set we can extract a balanced sample14 
which is used as a training set for the second learning step. The 
balanced sample ensures that the training set has the same sta-
tistical properties as the full data set. This is one of the important 
steps in the mask manufacturing machine learning set up as it 
allows blending the signature and process information into a 
representative learning sample. Two major goals are achieved: 
the shortcoming of portioning tree algorithms which are very 
sensitive to the training data are overcome as the sample is a 
good representation of the full production data set and modest 
process mismatches are represented in the training set as the 
distinct characteristics induced by mismatches are represented. 
This property is particularly important in cases where for capacity 
reason two distinct tools are used within production which can-
not be compensated for separately. In our specific case any tool 
which is not an electron beam writer is of this type, as only the 
EBM writers exert the CD compensation and mask routing after 
writing needs to be flexible to ensure maximum throughput. In table 
2) for example the parameter “Tool 1, Tool 2” is marked grey, as 
we like to treat both tools equally in the compensation approach 
(learning step “B”) , even though a distinct behavior of both tools 
has been noted in the learning step “A”.

The balanced sample identified in learning step “A” enters the 
learning step “B” as a training set. In this step a partitioning tree 

(1)

(2)

(3)

(4)

Figure 5. Increasing the spatial resolution of the machine learning algorithm increases the model complexity: an increase of the resolution by the factor 2 
increases the number of bins by 4. This in turn increases the number of partitions for the machine learning. The boundaries of distinct layout geometries are 
exhibited by the colored lines in the figure on the right. A placement independent boundary effect induces a CD shift; this leads to a pronounced variability 
which can be challenging for machine learning based on a limited amount of data.
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approach is used to explain the CD distribution using a full set of 
covariates (table 2)) describing the influence of local as well as 
global parameters on the CD signature. Thus the aim is to learn 
the full signature CD(x,y) ~ fL  + gG on each mask. Following the 
learning phase the model is validated in the full data set using two 
parameters for asserting the map quality. The first parameter is the 
compensational residual which measures the remaining signature 
after the correction map has been applied. This value is largely 
determined by run to run variations as well as by suboptimal CD 
compensation. The second value is the area under curve (AUC)15 
which measures the shape congruence of the CD compensation 
map with the measured CD signature.

For the example discussed in this paper a subtle tool mismatch 
as depicted in figure 2 is considered in the machine learning based 
compensation approach.

Disregarding the subtle yet detectable difference in tool induced 
CD signature performance as depicted in figure 2 results in out of 
specification conditions for masks. This means that the aspect of 
even modest tool mismatches is significant for CD control in the 
mask manufacturing. For production flexibility an approach where 
both tools can be used with identical compensation maps is largely 
preferable to an approach with separate compensation maps. Thus 
two compensation machine learning set ups were tested. The 

first approach blends the tool information by utilizing a balanced 
sample which explicitly takes the tool as a balancing parameter 
into account but computes an identical map for both tools. The 
second approach computes distinct maps for each tool. The 
data presented in figures 3) and 4) allows a detailed performance 
comparison of the two machine learning settings. The left panel 
of each figure shows the capability curve for the compensation 
residual. The difference between the two settings is marginal with 
the set up using tool specific maps outperforming the balanced 
sample only by 0.1 nm. A similar finding is documented for the 
area under curve for which the performance histogram is given in 
the middle panel of figure 3) and 4). Thus it can be concluded that 
the splendid blending of the auxiliary information in the balanced 
sample of the training set leads to a model performance where 
the impact of the distinct tool performance can be averaged as to 
yield the same capability as the dedicated set up. The balanced 
sample approach to CD control is with respect to the production 
requirements of flexibility and maximum capacity far more prefer-
able than tool specific control settings. It should be pointed out 
that the particular set up of performing two sequential learning 
steps which are linked by the balanced sample selection enables 
this kind of machine learning approach. Thus in this section it was 
demonstrated that this set up has the ability to mitigate modest 

Figure 7. Comparison of two compensation maps obtained for the same mask with two distinct models. The map in the left panel is obtained with coarse 
resolution and no dedicated boundary treatment. The map in the right panel is obtained with the fine resolution and a dedicated boundary treatment. This map 
shows a substantially improved performance at the boundary. In this case the compensation residual is reduced by 25% and is increased by 12.5%.

Figure 6. The introduction of four new covariates “I”, “II”, “III” and “IV” with three possible values “I”, “O” and “N” reduces the problem complexity. The roman 
numerals mark the four sides of each masks; “I” stands for inner, “O” for outer and “N” for none. A box marked with “N” is not in the immediate vicinity of the 
active boundary. A box marked with “O” in the column “III” is on the outside of the upper boundary of the active area.
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mismatches between tools and their corresponding processes in 
order to achieve a suitable process capability. The next section 
will focus on the importance of identifying good covariate – i.e. 
explanatory variables – for a successful application of machine 
learning strategies.

2.2 Model set up: boundary effects
The basic set up of the machine learning algorithm employs a 
spatial discretization of the mask field. An array of the N x N equally 
sized boxes is thus the basis of CD compensation. This specific 
machine learning set up has the flexibility to accommodate a va-
riety of physical effects observed in the manufacturing process. 
The CD step at the geometrical boundary of active area is such a 
significant effect. It is observed, that the transition induces a typical 
CD shift of 1nm to 2nm. This effect needs to be actively compen-
sated by the CD map in order to achieve a good CD capability.

As the CD dynamics at the boundary are induced on a very short 
spatial range, an increase of the spatial resolution of the machine 
learning model by 50% is required. However, such an increase in 
spatial resolution more than doubles the overall model complexity 
(see figure 5). In order to limit the complexity increase 4 additional 
covariates are introduced to the model. Each covariate has the 
four possible values “I”, “O” and “N”. The values mark the four 
possible boundaries associations of each box (see Figure 6). The 
values denote the boundary relation: “N” indicates no vicinity to the 
boundary where “I” and “O” denote a location at the inner/outer 
boundary. This set up enables the determination of the boundary 
effect independent of the spatial location. This in turn simplifies 
the learning task for the machine learning algorithm thus improving 
the model performance while reducing model complexity.

The learning task in the presence of a pronounced boundary ef-
fect is relatively complex. The short ranged nature of the boundary 
effect implies that the spatial resolution of the model binning needs 
to be increased as to reflect mainly the affected region (panel from 
left to right in figure 5)). This increases the computational effort 
substantially. Another dimension of complexity is added by the 
fact that the boundary varies considerably with the mask design 
as indicated by colored lines in the right most panel of figure 5). 
The increase in spatial resolution is in this case the major factor 
in improving the compensation performance. An overall com-
pensation improvement of 25% is achieved. The difference in 
the compensation map between the low resolution approach (left 
panel) and the high resolution approach with dedicated boundary 
variables (right panel) is depicted in figure 7). The map in the left 
panel lacks the boundary dynamics required for an optimal com-
pensation. The introduction of the dedicated boundary parameter 
reduces the update time from 78h to 34h which is a saving of nearly 
two days. As mentioned in the introduction, the constant update 
procedure is a major strength of machine learning approaches. 
This means that a shortening of the update cycle by 44h is a key 
achievement in the use of machine learning for CD control. Thus 
the introduction of optimal covariates in machine learning problems 
is of major importance for ensuring good predictive capabilities 
as well as reducing the computational load to manageable sizes.

3. Conclusions
This paper gives a detailed account of using machine learning 
in the context of mask manufacturing. Machine learning is a 
rapidly growing field at the interface of statistics and computer 
sciences. The applications of machine learning in the context of 
many internet related functionalities are already quite common 
and successful. Its use in manufacturing context, however, is only 
starting. We find - in the context of mask manufacturing - that the 
ability to systematically turn data into actionable insights opens 
the avenue for improving compensation methods substantially.
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American Coating Technologies LLC
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FUJIFILM Electronic Materials U.S.A., Inc.
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Halocarbon Products
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Hitachi High Technologies America, Inc.
JEOL USA Inc.
Mentor Graphics Corp.
Molecular Imprints, Inc.
Panavision Federal Systems, LLC
Profilocolore Srl
Raytheon ELCAN Optical Technologies
XYALIS

■	 Gartner Says Worldwide Semiconductor Revenue to Reach 
$400 Billion in 2017

Worldwide semiconductor revenue is forecast to total $401.4 billion in 2017, an increase of 16.8 
percent from 2016, according to Gartner, Inc. This will be the first time semiconductor revenue 
has surpassed $400 billion. The market reached the $300 billion milestone seven years ago, 
in 2010, and surpassed $200 billion in 2000.

“A shortage of memory is creating a boom in the overall semiconductor market,” said Andrew 
Norwood, research vice president at Gartner. “Memory vendors have been able to increase 
their price for DRAM and NAND, driving revenue and margins higher.”

The booming memory market, with revenue forecast to increase 52 percent in 2017, is expected 
to shake up semiconductor market share rankings. “As the largest memory supplier, Samsung 
Electronics is set to gain the most,” said Mr. Norwood. “This gives Samsung its best shot at 
capturing the No. 1 position from Intel for the first time.”

Intel dethroned NEC for the No. 1 position in semiconductor rankings in 1992 and has held it 
ever since. Samsung captured the No. 2 position in 2002 and has held that since.

“What the memory market gives, the memory market takes away,” said Mr. Norwood. “The 
memory bubble is expected to go bust in 2019 as memory vendors add new supply and 
Samsung could lose a lot of the gains it makes this year and next.”

■	 Canon provides nanoimprint lithography manufacturing 
equipment to Toshiba Memory’s Yokkaichi Operations plant

TOKYO, July 20, 2017—Canon Inc. announced today that the company has provided the FPA-
1200NZ2C, semiconductor lithography equipment that utilizes nanoimprint lithography (NIL) 
technology which Canon has been continuously developing since 2004, to leading provider of 
semiconductor memory solutions Toshiba Memory Corporation’s Yokkaichi Operations plant. 
The provision of this equipment represents significant progress toward semiconductor device 
mass production that employs nanoimprint technology.

Facing the difficult challenge of circuit scaling, or miniaturization—the key to the advancement 
of semiconductor devices—Canon has been carrying out R&D since 2004 in the field of next-
generation semiconductor manufacturing equipment that utilizes NIL technology which achieves 
even more detailed circuit patterns as small as 10 nm at an even lower cost, compared with 
photolithography. As part of this effort, Canon welcomed American company Molecular Imprints, 
Inc. (now Canon Nanotechnologies, Inc.) into the Canon Group in 2014.

Nanoimprint lithography manufacturing equipment utilizes a patterning technology that 
involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting 
technology onto the substrate, faithfully reproducing patterns with a higher resolution and 
greater uniformity compared to those produced by photolithography equipment. This technology 
simplifies the cutting-edge lithography processes used to manufacture semiconductor devices, 
to make possible a significantly reduced CoO (Cost of Ownership).

Canon’s delivery of the FPA-1200NZ2C NIL manufacturing equipment for semiconductor mass 
production to the Yokkaichi Operations plant of Toshiba Memory further accelerates progress 
toward the world’s first semiconductor memory mass production to utilize NIL technology.

■	 TSMC Logs First 10nm Sales

TAIPEI — Taiwan Semiconductor Manufacturing Co. (TSMC) has recognized its first revenue from 
10nm products, trailing Samsung, its main rival in the foundry business, by nearly four months.

TSMC said that 10 nm accounted for 1 percent of its overall revenue during the second quarter 
of this year. In March, Samsung announced its first 10-nm products, including the company’s 
Exynos 8895 SoC as well as Qualcomm’s Snapdragon 835.

TSMC expects to exit a slump that saw its second-quarter sales in dollar terms edge up just 3.2 
percent from the same period a year ago. The company, which makes mobile communications 
products for Apple and MediaTek, said that an inventory correction among fabless customers 
will probably end during third quarter this year.

TSMC also said its 7-nm yield is ahead of schedule and it expects a fast ramp in 2018. The 
company plans to insert several extreme ultraviolet (EUV) layers at 7 nm, but declined to provide 
details. The company also plans to offer a 7-nm plus node that it expects will allow customers 
easy migration from 7 nm.

At this point, TSMC has about 30 tape outs for 7-nm products.

TSMC added that its 5 nm roadmap is on track for a launch in the first quarter of 2019.
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SPIE is the international society for optics and photonics, an  
educational not-for-profit organization founded in 1955 to advance 
light-based science and technology. The Society serves nearly 
264,000 constituents from approximately 166 countries, offering 
conferences and their published proceedings, continuing education, 
books, journals, and the SPIE Digital Library in support of interdisci-
plinary information exchange, professional networking, and patent 
precedent. SPIE provided $4 million in support of education and 
outreach programs in 2016. www.spie.org

International Headquarters
P.O. Box 10, Bellingham, WA 98227-0010 USA 
Tel: +1 360 676 3290 
Fax: +1 360 647 1445
help@spie.org • www.SPIE.org

Shipping Address
1000 20th St., Bellingham, WA 98225-6705 USA

Managed by SPIE Europe 
2 Alexandra Gate, Ffordd Pengam, Cardiff,  
CF24 2SA, UK 
Tel: +44 29 2089 4747 
Fax: +44 29 2089 4750
spieeurope@spieeurope.org • www.spieeurope.org

2017

SPIE Photomask Technology and  
SPIE International Conference on  
Extreme Ultraviolet Lithography 2017
11-14 September 2017
Monterey, California, USA
www.spie.org/puv

2018

SPIE Advanced Lithography
25 February-1 March 2018 
San Jose Marriott and  
San Jose Convention Center  
San Jose, California, USA
www.spie.org/al

Photomask Japan 2018
18-20 April 2018
Pacific Yokohama
Yokohama, Japan

The 34 European Mask and  
Lithography Conference, EMLC 2018
19-20 June 2018
MINATEC Conference Centre
Grenoble, France

Corporate Membership Benefits include:
■	 3-10 Voting Members in the SPIE General Membership, 

depending on tier level

■	 Subscription to BACUS News (monthly)

■	 One online SPIE Journal Subscription

■	 Listed as a Corporate Member in the BACUS Monthly 
Newsletter 
www.spie.org/bacushome
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 About the BACUS Group
Founded in 1980 by a group of chrome blank users wanting a single voice to interact with suppliers, BACUS has 
grown to become the largest and most widely known forum for the exchange of technical information of interest 
to photomask and reticle makers. BACUS joined SPIE in January of 1991 to expand the exchange of information 
with mask makers around the world.

The group sponsors an informative monthly meeting and newsletter, BACUS News. The BACUS annual Photomask 
Technology Symposium covers photomask technology, photomask processes, lithography, materials and resists, 
phase shift masks, inspection and repair, metrology, and quality and manufacturing management. 

Individual Membership Benefits 
include:
■	 Subscription to BACUS News (monthly)

■	 Eligibility to hold office on BACUS Steering Committee

www.spie.org/bacushome

You are invited to submit events of interest for this  
calendar. Please send to lindad@spie.org; alternatively, 

email or fax to SPIE.
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Join the premier professional organization  
for mask makers and mask users!

Volume 33, Issue 9	                     Page 9

N • E • W • S


