PHOTOMASK

BACUS—The international technical group of SPIE dedicated to the advancement of photomask technology.

First Place Best Poster Award

Optimization of mask shot count using MB-MDP and lithography simulation

Gek Soon Chua, Wei Long Wang, Byoung IL Choi, GLOBALFOUNDRIES Singapore, 60 Woodlands Industrial Park D St 2, S 738406, Singapore

Yi Zou, Cyrus Tabery, GLOBALFOUNDRIES USA, 840 N. McCarthy Blvd. Milpitas, CA 95035, USA

Ingo Bork, Tam Nguyen, Aki Fujimura, D2S Inc. 4040 Moorpark Ave, Suite 250, San Jose, CA 95117, USA

ABSTRACT

In order to maintain manageable process windows, mask shapes at the 20nm technology node and below become so complex that mask write times reach 40 hours or might not be writeable at all since the extrapolated write time reaches 80 hours. The recently introduced Model Based Mask Data Preparation (MB-MDP) technique is able to reduce shot count and therefore mask write time by using overlapping shots. Depending on the amount of shot count reduction the contour of the mask shapes is changed leading to the question how the mask contour influences wafer performance.

This paper investigates the tradeoff between mask shot count reduction using MB-MDP and wafer performance using lithography simulation. A typical Source-Mask-Optimization (SMO) result for a 20nm technology will be used as an example.

1. Introduction

The ability to use curvilinear features for mask lithography becomes critical, especially for SMO & advanced mask optimization (such as Inverse Lithography Techniques (ILT)) for 20nm technology. However, ideal mask shapes are virtually not writeable because of the unmanageable mask writing times. The conventional approach is to "Manhattanize" the shapes used to create the mask patterns so that the masks can be written using only rectangular variable shaped-beam (VSB) shots. However there is a trade-off between complexity of optimized mask, mask write time & lithographic performance. [1] Several shot count reduction techniques for SMO & ILT Manhattanized masks have been introduced, such as Mask Grid Approximation, Jog smoothing, [2] L-shaped-beam shot [3] and overlapping shot from Model Based Mask Data Preparation (MB-MDP)[4] to address the appropriate amount of trade-off.

Continues on page 3.

Current flow with ILT-OPC Pattern Correction for Wafer (OPC) Pattern Correction for mask (MPC) Fracturing (MDP) Mask Writing Model Based-MDP (incl. MPC) Mask Writing

Figure 1. Illustration of cycle time benefits with MB-MDP flow for 20nm ILT.

TAKE A LOOK INSIDE:

INDUSTRY BRIEFS
-see page 11

CALENDAR
For a list of meetings
—see page 12

EDITORIAL

Can the industry rein in mask write times at 20nm?

Steffen Schulze, Mentor Graphics

At this year's Photomask conference, Wally Rhines, CEO of Mentor Graphics, presented a talk entitled "Bucking the trends - driving changes in how the EDA and semiconductor manufacturing industries work together." He selected a number of examples where challenges predicted for the industry were overcome by an innovation fueled learning curve. Innovation is necessary to compete, driving down the cost per transistor from generation to generation and along with it the cost of equipment and software. He shared data how the scare of the "million dollar mask set" was overcome through technology and yield learning. One current challenge he touched on was the mask write time increase associated with inverse lithography techniques (ILT) -a contender to extend 193nm one more node. His forecast of >10x shot count increase presents another scare of cost explosion for mask users.

Mask write time increase has two dimensions. The VSB write approach, which dominates the writing of advanced masks today, has a correlation to content e.g. the number of vertices in the data or the shot count after fracture. Hence the increase in the content driven by the node shrink provides for growth in mask writing time. Any addition of shapes or "decorations" e.g., in the form of OPC, contributes proportionally. ILT produces smooth mask targets that have a tremendous "information density." Depending on the transformation into manhattanized polygons it drives up the shot count. The introduction of double patterning adds more masks to the set and increases the overall mask writing time.

These trends have two solution approaches. The growth in mask count can be countered with tool capacity. The expansion of the write time per plate requires solutions that tackle the mask write time directly - on the mask writer side by improved throughput and on the EDA side by reducing the data complexity. NuFlare Technology presented on a next generation tool with a significantly increased beam current. The new source should enable a mask write time reduction by ~40%, which is about to neutralize the content growth trend according to Moore's law.

EDA suppliers like Mentor Graphics offered solutions to reduce the shot count simple techniques to align fragments in the OPC steps and more complex techniques of simplifying the data for individual writing passes. Another idea changes the paradigm of mask writing by allowing overlapping shots. These approaches promise a reduction in shot count between 10% and 40%.IMS Nanofabrication presented a proof-of- concept platform for scanning ebeam writing with thousands of beams, a content-independent writing approach leveraging the parallelism of many beams for write time reduction.

Will these approaches muster the required cost trends for mask making to maintain the learning curve? Layout simplification or software supported mask writing techniques are not cost neutral. One time investments like new data formats, updates to the mask writers — hardware and software—and wafer qualification are required. Potential yield impact in mask making, software and hardware expenses for data preparation constitute additional operational expenses.

The biggest benefit at a low cost can be obtained by reducing the complexity of the layout through optimization of the OPC. Optimizations in fracturing and simple rule-based improvements like jog alignment come next on the effort scale. All methods modifying mask shapes impose increasing cost depending on the work flow changes.

So can the industry rein in the mask write times at 20nm? Yes. Technology is being offered to tackle the challenge and for sure a future keynote will report it as overcome. Which solution will be used, depends on the economic viability. The promises of a mask writer sustaining a data independent write time would be the mask vendor's preference since it allows for continuity in the current processing and inspection methods. It is some time out - so the evolutionary improvements offered by today's equipment and software suppliers have to bridge the gap.

BACUS News is published monthly by SPIE for BACUS, the international technical group of SPIE dedicated to the advancement of photomask technology.

Managing Editor/Graphics Linda DeLano Advertising Teresa Roles-Meier **BACUS Technical Group Manager** Pat Wight

■ 2012 BACUS Steering Committee ■

President

Wolfgang Staud, Applied Materials, Inc.

Vice-President

John Whittey, KLA-Tencor MIE Div.

Secretary

Artur Balasinski, Cypress Semiconductor Corp.

Newsletter Editor Artur Balasinski, Cypress Semiconductor Corp.

2012 Annual Photomask Conference Chairs

Frank E. Abboud, Intel Corp. Thomas B. Faure, IBM Corp.

International Chair

Naoya Hayashi, Dai Nippon Printing Co., Ltd.

Education Chair

Artur Balasinski, Cypress Semiconductor Corp.

Members at Large

Paul W. Ackmann, GLOBALFOUNDRIES Inc. Michael D. Archuletta, RAVE LLC Uwe Behringer, UBC Microelectronics Peter D. Buck, Toppan Photomasks, Inc. Brian Cha, Samsung Kevin Cummings, ASML US, Inc. Glenn R. Dickey, Shin-Etsu MicroSi, Inc. Thomas B. Faure, IBM Corp. Brian J. Grenon, Grenon Consulting Jon Haines, Micron Technology Inc. Mark T. Jee, HOYA Corp, USA Bryan S. Kasprowicz, Photronics, Inc. Oliver Kienzle, Carl Zeiss SMS GmbH Wilhelm Maurer, Infineon Technologies AG M. Warren Montgomery, The College of Nanoscal Science and Engineering (CNSE) Abbas Rastegar, SEMATECH North Emmanuel Rausa, Plasma-Therm LLC. Douglas J. Resnick, Molecular Imprints, Inc. Steffen F. Schulze, Mentor Graphics Corp.

SPIE

Jacek K. Tyminski, Nikon Precision Inc.

Larry S. Zurbrick, Agilent Technologies, Inc.

P.O. Box 10, Bellingham, WA 98227-0010 USA Tel: +1 360 676 3290 or +1 888 504 8171 Fax: +1 360 647 1445 SPIE.org help@spie.org

All rights reserved.

$N \bullet E \bullet W \bullet S$

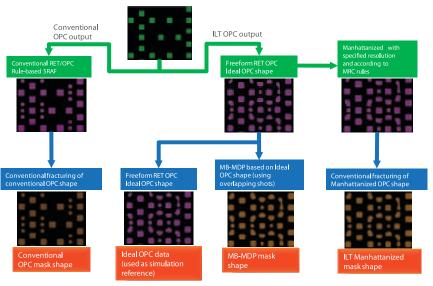


Figure 2 Illustration of the four different mask shapes used for verification: Besides the conventional OPC with rule-based SRAFs three different versions of an ILT output are used: a) the ideal curvilinear mask shape, b) a Manhattanized and conventionally fractured mask shape, and c) a MB-MDP generated mask shape.

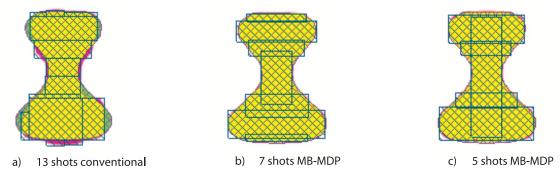


Figure 3 Illustration of shot count reduction with overlapping VSB shots for self-aligned SRAM Via. Image a) shows the Manhattanized and conventionally fractured via using 13 VSB shots. The resulting simulated mask shape is smaller than the ideal mask shape in several areas (green color) while it is larger than the ideal shape in others (red color). Image b) and c) show shot configurations extracted by MB-MDP using 7 VSB shots and 5 VSB shots respectively. A comparison of the resulting mask shape with the ideal shape shows a better match than the Manhattanized version i.e. only very small red or green areas near the edges are visible in b) and c).

Besides, the integration of mask process correction (MPC) into OPC modeling and inclusion into a post tapeout flow is likely to be required in the future technology nodes. Several reports for mask process correction application in both tapeout^[5-7] and mask manufacturing^[8-9] are discussed vigorously. The integrated optics and mask modeling scheme can be applied on various lithography systems, such as EUV lithography, multiple patterning and inverse lithography & source-mask optimization and will compel stringent requirements for runtime and data integrity.

In this paper, we will discuss the lithographic quality trade-off attained from shot count reduction using overlapping shots in Model Based Mask Data Preparation (MB-MDP) technique. MB-MDP technique is very effective for writing complex curvilinear or Manhattanized shapes on masks without exploding shot count by using overlapping shots.^[10-11] This paper extends that work apply-

ing MB-MDP to Ideal ILT shapes to harness the process window of an "ideal" mask shape while reducing shot count even compared to a conventionally fractured Manhattan-type mask shape. By mimicking the post-OPC ideal mask shape, approximately 30% shot count reduction compared to the Manhattanized mask can be achieved, without compromising litho performance and mask data size.

2. Model-Based Mask Data Preparation for the 20nm Node

Current OPC modeling assumes that the mask pattern equals the pattern data without considering the mask process beyond a mask-wafer bundled model and a corner rounding model for mask shapes. However taking into consideration the e-beam forward

Table 1. Optical simulation conditions.

Optical	Conditions
NA	1.3
Illumination	C-quad
Mask	COG

Table 2. Verification conditions.

Criteria	Conditions			
DOF	10% CD variation at nominal dose			
MEEF	+/- 0.25nm of mask bias			
PV Band & Hotspot	With the process variation:			
	1) Defocus = $\{-58nm, 0, 58nm\}$			
	2) EL = {-3.14%, 0, 3.14%}			
	3) Mask bias = $\{-0.25nm, 0, 0.25nm\}$			

& back scattering as well as mask process effects such as develop, bake and etch, the resist edge on the mask will not be the same as the drawn edge, particularly for sub-80nm features with many sub-50-nm Manhattan jogs. MB-MDP, on the other side, simulates e-beam blur and mask processing effects generating VSB shots which print the desired mask shapes. It is aware of Backscattering (PEC), Fogging (FEC), and Loading (LEC) on the e-beam writer. Because of the simulation effort longer runtime of MB-MDP is expected.

Nevertheless, as shown in Figure 1, performing MB-MDP based on Ideal OPC shapes (using overlapping shots) more than makes up for the longer MDP runtime since first, it eliminates the time needed for ILT Manhattanization; second, it already includes MPC so there is no need for a dedicated MPC step, and third, it reduces mask write time by facilitating the overlapping shot technique.

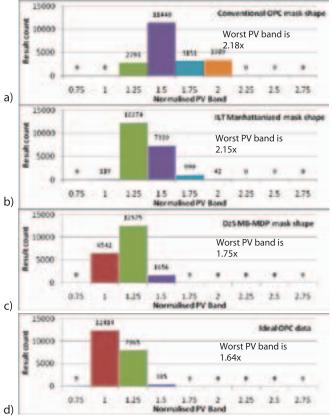


Figure 4. PV Band verification for different mask shapes.

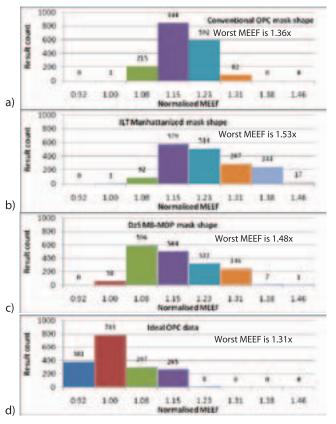


Figure 5. MEEF verification for different mask Shapes.

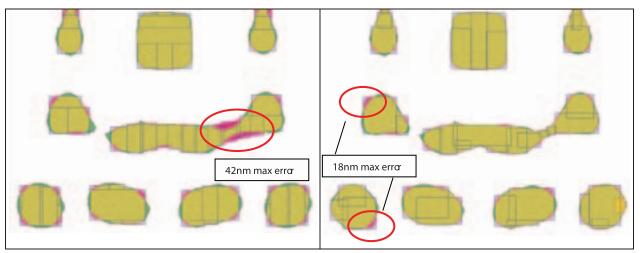


Figure 6. Location of maximum error between the ideal mask shape and the simulated mask shape after Manhattanization (left image) and MB-MDP (right image). The MB-MDP mask contour follows the ideal contour much closer than the Manhattanized mask.

3. Terminology and Methodology

A. Description of Test Case Preparation

In this simulation study the lithographic performance of four different masks is compared. The first mask is based on the rule-based SRAF OPC approach and is fractured conventionally. This mask is labeled "Conventional OPC mask shape" in Figure 2 and is used to compare the results to an established OPC technology.

Conventional CPC mask shap 400 Worst DOF count is 830 300 200 0.125 0.25 0.375 0.5 0.625 0.75 0.875 a) 1000 **ILT Manhattanued mask shape** 800 Worst DOF count is 440 400 400 \$12 200 D 0.125 0.25 0.375 0.5 0.625 0.75 0.875 b) Normalised DOF 1000 D25 M8-MDP mask shap APVA Worst DOF count is 22 400 400 200 0.5 0.625 c) Normalised DOF 1000 Ideal OPC data 800 Worst DOF count is 57 600 400 0.5 0.625 0.75 0.875

Figure 7. DOF verification for different mask shapes.

The second mask is based on an ILT engine without applying any Manhattanization so the OPC data is curvilinear in shape. This mask is labeled "Ideal OPC data" and is used as simulation reference assuming the shapes can be generated on a mask without any limitations in shot count, MRC limits or Manhattanizing resolution. The third mask is also based on the ILT engine, however, instead of outputting curvilinear shapes, the ILT engine

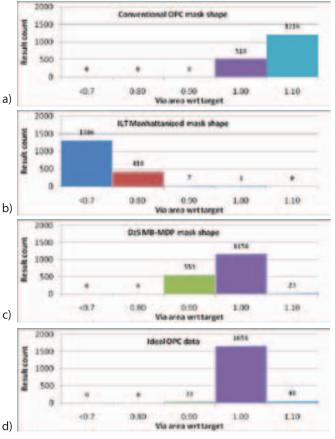


Figure 8. Via area verification for different mask shapes.

Table 3. Comparison chart summarizing the verification results for the 4 different mask types studied here.

Normalised	Worst PVBand	Worst MEEF	Worst DOF counts	Min Via size	Soft Bridge	Soft Pinch	SRAF print	Fail print	Shot count (normalized)
Conventional OPC mask shape	2.18	1.36	830	1.1	0	0	0	0	1
ILT Manhattanized mask shape	2.15	1.53	440	0.7	0	0	0	0	5
D2S MB-MDP mask shape	1.75	1.48	22	0.9	0	0	0	0	3.5
Ideal OPC data	1.64	1.31	57	0.9	0	0	0	0	Not manufacturable

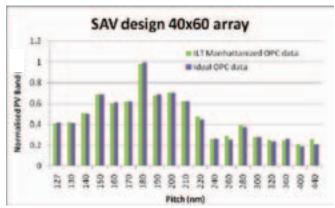


Figure 9. Self-aligned Vias through pitch for ILT Manhattanized OPC and Ideal OPC data.

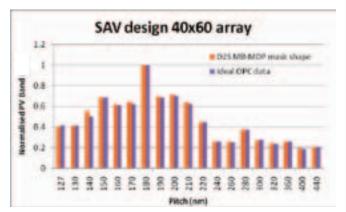


Figure 10. Self-aligned Vias through pitch for MB-MDP mask shape and Ideal OPC data

Manhattanizes the data so that it can be fractured by conventional tools without exploding shot count. This mask is labeled "ILT Manhattanized mask shape" and is used as a reference for the conventional shot count. Finally, the forth mask is based on the "Ideal OPC data" without any Manhattanization and the mask data is prepared using MB-MDP and overlapping shots. This mask is labeled "D2S MB-MDP mask shape" in Figure 2.

The different mask shapes described above are used to determine the lithographic tradeoff between mask shot count reduction using conventional fracturing (Manhattanization) and shot count reduction using MB-MDP (overlapping shots).

B. Model-Based Mask Data Preparation (MB-MDP)

MB-MDP as introduced in previous papers^[10-14] combines shot count reduction by using overlapping shots and Mask Process Correction (MPC) in one step. Since MB-MDP simulates the resulting mask contour in a similar way that OPC does on the wafer level, MB-MDP enables the use of overlapping shots, dose modulation of individual e-beam shots and character projection. Figure 3 illustrates the effectiveness of using overlapping shots for the self-aligned via example used in this study.

Besides the shot count reduction benefit Figure 3 demonstrates the ability to create better mask shapes with a simulation based MDP flow. Since MB-MDP is aware of e-beam and mask effects, it can account for those effects during shot placement and optimize both concurrently.

As indicated earlier in this paper, a simulation-based method requires calibrated models in order to produce the correct results, in our case shots of the correct size and exact placement. For MB-MDP the model has to account for short- and mid-range scattering effects as well as mask processing effects like develop, bake, and etch. When comparing MB-MDP results with mask and wafer measurements prior model calibration is required. In this simulation-based study, however, a rigorous model calibration is not required. Instead a generic e-beam forward scattering range of 30nm was used and it was assumed that the e-beam machine corrects for backscattering (PEC), loading (LEC), and fogging (FEC). The use of such a generic model does not change the validity of the results in principle as the use of a calibrated model would change shot sizes only marginally but result in the same shot configurations and therefore in the same shot count.

C. Lithography Simulation Conditions

The lithography simulation focus is to investigate the impact of process window degradation of mask shapes using conventional fracturing and MB-MDP. The mask shapes from conventional fracturing and MB-MDP were simulated under typical optical conditions of a 20nm node as summarized in Table 1. The verification conditions for determining Depth of Focus (DOF), Mask Error Enhancement Factor (MEEF), and Process-Variation Band (PVBand) are summarized in Table 2.

4. Results and Discussion

A. Lithography Simulation Verification on 20nm via SRAM

Figure 4 shows the PV band verification for 4 different mask shapes as described in section 3A. The results show that the curvilinear ideal OPC shape will produce the best wafer results.

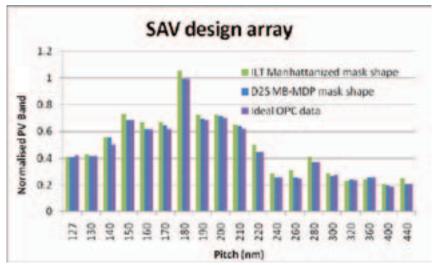


Figure 11. Comparison of the normalized PV Band of 3 different mask shapes of the self-aligned Vias through pitch: Manhattanized ILT, MBMDP, and Ideal.

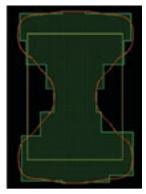


Figure 12. Ideal Self-aligned Via wafer target (inner rectangle), Manhattanized data (zigzag shape), and the simulated mask shape.

The traditional rule-based SRAF OPC will no longer be satisfactory for sub-80nm features as depicted in Figure 4a) with the worst PV band at 2.18x using the PV band of the ideal mask shape as a reference. It makes sense that the most effective shapes on masks are curvilinear with worst PV band at 1.64x as shown in Figure 4d). Nonetheless, curvilinear mask shapes are so complex and non-manufacturable at this point, the next practical approach is to Manhattanize the ideal OPC shape as shown in Figure 4b). While the PV band for the Manhattanized mask shape is improved over the traditional rulebased SRAF OPC, it still falls short of the ideal OPC performance. This is because the final mask image of the Manhattanized OPC shape deviates from the ideal mask shape . Furthermore, the Manhattanized mask shot count is around five times more than the traditional rule-based SRAF OPC mask. This would result in a longer OPC runtime and longer mask writing time which are costly and may not be justifiable for the relatively small lithographic improvement.

Model-based mask data preparation (MB-MDP) technique as presented in Figure 4c) is able to reduce shot count by more than 30% compared to the Manhattanized mask. The shot count using MB-MDP with overlapping shots is only 3.5 times the traditional rule-based SRAF OPC mask. The normalized worst PV band of the MB-MDP mask is 1.75x which is significantly better than the worst PV band of the Manhattanized mask which shows an increase of 2.15x. Even at 30% shot count reduction, the contour of the MB-MDP mask shape is closer to the ideal OPC mask contour and results in the best manufacturable wafer performance.

Figure 5 shows the MEEF verification for the 4 different mask shapes. Comparing the MEEF histogram in Figure 5b) for the Manhattanized OPC shape with Figure 5c) for the MB-MDP mask shape, there are more counts of lower MEEF for the MB-MDP version compared to the Manhattanized version.

A reason for the degraded lithography performance of the Manhattanized mask can be seen in Figure 6. Shown on the right side of Figure 6 is the location with the largest error between the MB-MDP mask and the ideal mask shape while the left side of Figure 6 shows the same location for the Manhattanized mask. The comparison shows that the MB-MDP mask follows the ideal mask shape more closely than the Manhattanized mask since the use of overlapping shots allows following the ideal shape closely

without exploding the shot count.

Figure 7 shows the DOF verification for the 4 different mask shapes. The traditional rule-based SRAF OPC cannot provide adequate DOF for 20nm Via SRAM as highlighted in Figure 7a). There are 830 worst DOF (unusable) counts, twice as much than worst DOF counts for Manhattanized mask shape as shown in Figure 7a) and Figure 7b). The worst DOF counts are significantly reduced for the ideal ILT mask due to better seeding and placement of SRAFs around the main patterns as shown in Figure 7d. By controlling the contour of the mask shape through mask simulation and overlapping shots, DOF of the MB-MDP mask in Figure 7c) is closer to what an ideal OPC mask can offer as shown in Figure 7d) and further reduce the worst DOF counts.

Apart from the PV band, MEEF and DOF check, the via size accuracy is also checked for different mask shapes as shown in Figure 8. The results show clearly that the most effective shapes on mask are curvilinear as depicted in Figure 8d). As seen in Figure 8a) for traditional rule-based SRAF OPC, via size is about 10% bigger. Compared with Figure 8c) for MB-MDP, there is an increased number of bigger (closer to target) vias using MB-MDP.

Table 3 gives an overall comparison of the various verification checks for 20nm Via SRAM, comparing all 4 different mask shapes. The comparison chart shows that MB-MDP is able to harness the benefits of larger process window for an ideal OPC mask solution with manageable shot counts and mask writing time. MB-MDP provides the closest match for enabling complex assist features to print the critical 20nm Via SRAM with no show-stopper on unmanageable e-beam write times. MB-MDP enables the reality for curvilinear ideal ILT patterns using production

e-beam writers to enlarge the process window for 20nm Via layer.

B. Lithography Simulation Verification on through Pitch

In 20nm Via layer design, square (round) shapes, slightly rectangular, and rectangular bar-like shapes have to print simultaneously. The self-aligned via schemes can result in some fairly long bars. These varied shapes make SRAF placement more complicated.

In this study, the PV band through pitch for rectangular bar-like self-aligned via (SAV) are investigated. Figure 9 compares the PV band through pitch for Self-aligned Vias for ILT Manhattanized OPC and Ideal OPC data. In contrast to the other lithography simulations, in this particular case the rectangular mask shape is used

 $N \bullet F \bullet W \bullet S$

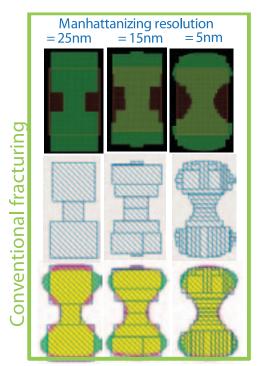


Figure 13. Self-aligned Via Manhattanized input data (top), fractured data (center), and simulated mask shapes (bottom) for conventional fracturing at 3 different resolutions for Manhattanization.

Shot count reduction
57% 45% 33%

Shot count reduction
57% 45% 33%

Figure 14. Self-aligned Via Ideal input data (top), MB-MDP generated shots (center), and simulated mask shapes for 3 different shot count reduction values.

as input for the lithography simulation. Using this rectangular OPC data, the PV bands do not show significant differences between ILT Manhattanized and Ideal data. This illustrates the convergence of the OPC tool to perform Manhattanization. Based on a 45% shot count reduction, the PV band through pitch for the MB-MDP mask shape also does not show major differences (less than 1nm across pitch) to the Ideal OPC data as shown in Figure 10.

However as shown in Figure 11 using the simulated mask shape as input instead of the rectangular shape, the PV band for the conventionally fractured Manhattanized mask is worse across pitches because the Manhattanization does not consider e-beam and mask processing effects. These depict some performance degradation and portrays as higher PV band through pitch for ILT Manhattanized mask shape. This result shows there is a prevailing relationship between the Manhattanizing step, shot count and lithographic performance.

Figure 12 shows the ideal SAV shape (red contour) resembling an hour-glass. Based on varying Manhattanizing jogs, the final OPC data can deviate from the ideal SAV shape. SAV at pitch 180 is selected for a quality vs. mask shot count reduction trade-off study as the PV band at pitch 180 is the largest across all pitches.

C. Quality & Mask Shot Count Reduction Trade-off

Figure 13 shows the SAV data and mask shape for conventional fracturing for 3 different Manhattanizing Resolution (MR) settings. The shot count required for a $3?m \times 3?m \times 34$, pitch 180nm is 4196 for MR = 15nm (production standard for 20nm). Reducing MR (relaxed to larger jogs) can be an easy method to reduce the OPC complexity and mask cost (shot count reduces to 1728 counts) for the technology node. Nevertheless, as seen in Figure 13 on the mask contour simulation, the MR = 25nm mask contour succumb to larger green (signifies mask shape is smaller than ideal) and red

(signifies mask shape is larger than ideal) areas. Reducing the MR steps to 5nm, on the other hand, will yield a slightly better-matched mask contour at the cost of exorbitant 13378 shots (more than 3 times the production standard).

Similarly to understand mask shot count reduction trade-off for MB-MDP, 3 different mask contours for shot count reduction variety are produced to mimic the OPC-desired contour as shown in Figure 14. Enabling overlapping shots on the SAV at different amount of shot count reduction (57%, 45% and 33%) from production standard, the mask contour simulations show a very good shape match at 33% and 45% shot count reduction and differences similar to the ones observed for MR = 15nm at a shot count reduction of 57%.

Figure 15 and Figure 16 show the mask shape comparison at 33% shot count reduction and 45% shot count reduction, respectively. The two figures show clearly that the assist features (adopting overlapping shots) for MBMDP are closer to the ideal assist bar shape for best performance. The assist features from conventional fracturing are too small to help transmit enough light energy or contrast to help the main features.

Finally Figure 17 summarizes the mask shot count trade-off between cost and wafer quality (worst PV band) graphically. The worst PV band verification demonstrates the worst EPE distribution of all edges for SAV across dose, mask bias and focus variation. The conventional fracturing for ILT Manhattanized mask shape shows that relaxing MR to 25nm to achieve a 58% shot count reduction obviously worsens the OPC result further. On the other side, tightening MRC down to 5nm does not bring the worst PV band down to ideal level. This shows that there is a gap to bring Manhattanized mask shape to achieve the best wafer results with economically acceptable write times. Shot count for conventional fracturing will explode for lower MR settings (MR = 5nm) and is

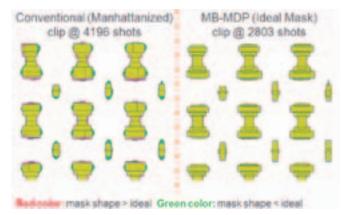


Figure 15. Mask shape comparison at 33% shot count reduction.

still unable to capture the ideal OPC lithography performance.

From the mask shot count reduction ratio for all test cases, MB-MDP is shown to benefit the most from overlapping shots algorithm, comparing to conventional fracturing. MB-MDP uses overlapping shots to mimic the ideal OPC data/mask shape to realize lithography performance and at the same time achieve significant shot count reduction. With shot count reduction at 33% - 45%, the quality metric "worst PV band" is brought closer to the worst PV band achievable with ideal shapes. This shows that MB-MDP shot count reduction at production worthy quality level is feasible without compromising lithography performance.

5. Conclusion

Overlapping shots created by MB-MDP enable lowered shot count (and therefore faster write-times) while simultaneously maintaining or improving lithography process window on the wafer. In addition, MB-MDP can simulate the effects of shots to produce the OPC-desired contour on the mask plane. This is effective to reduce shot count for complex masks generated by technologies like Source-Mask Optimization (SMO)/ Full Chip Mask Optimization (FCMO), or Inverse Lithography Technology (ILT).

The effectiveness of MB-MDP is verified on 20nm Via SRAM. It shows that MB-MDP is able to harness the benefits of larger process window for an ideal OPC mask solution with manageable shot counts and mask writing time. Moreover, optimizing mask manufacturability (Manhattanizing resolution & shot count) can be achieved without compromising litho performance & mask data size.

6. Future Work

Evaluation mask is considered to validate the benefits for MB-MDP. For future work, collaboration with a mask shop is planned to compare the fracturing data-size and time between the conventional fracturing method for conventional shapes and MB-MDP's technique for complex (SMO or ILT) shapes will be carried out. Full chip evaluation of the results in mask-wafer double simulation and with mask and wafer test printing will follow. Final validation can be done on wafer or AIMS.

7. Acknowledgment

The authors would like to thank and acknowledge Takamizawasan, Tsujimoto-san, Hayano-san, Migita-san, Motonaga-san and Takayanagi-san (Dai Nippon Printing, Co. Ltd) for their support & discussion for mask-making in future work.

Figure 16. Mask shape comparison at 45% shot count reduction.

8. References

- [1] Kim, B., Suh, S., Jung, S., Woo, S., Cho, H., Tolani, V., Irby, D., Chen, D., Kim, D., Baik, K., and Gleason, B., "Tradeoff between lithographic performance and mask cost of masks made by inverse lithography technology", Proc. Of SPIE, Vol. 7379, pp. 7379-57, 2009.
- [2] Ellyn Yang, Cheng He Li, Se Jin Park, Yu Zhu, and Eric Guo, "An optimized OPC and MDP flow for reducing mask write time and mask cost", Proc. Of SPIE, Vol. 7823, pp. 78233E-1, 2010.
- [3] Emile Sahouria and Amanda Bowhill, "Generalization of shot definition for variable shaped e-beam machines for write time reduction", Proc. Of SPIE, Vol. 7823, pp. 78230T-1, 2010.
- Christophe Pierrat, Larry Chau, and Ingo Bork, "Mask Data Correction Methodology in the Context of Model-Based Fracturing and Advanced Mask Models", Proc. Of SPIE, Vol. 7973, pp. 79732J-1, 2011.
- [5] Timothy Lin, Tom Donnelly, and Steffen Schulze, "Model based mask process correction and verification for advanced process nodes", Proc. **Of SPIE,** Vol. 7274, pp. 72742A-1, 2009.
- Jing Xue, Zhijie Deng, Kyoil Koo, James Shiely, Sooryong Lee, Yunqiang Zhang, Yongfa Fan, and Thomas Schmoeller, "Integrated Mask and Optics Simulations for Mask Corner Rounding Effect in OPC Modeling", Proc. Of SPIE, Vol. 7823, pp. 782341-1, 2010.
- [7] Yasuko, S., George, C., Jen-Shiang, W., Shufeng, B., Rafael, H., Jiangwei, L., Jun, T., Doug, V., Jim, W., Tadahiro, T., Takayuki, O., Takashi, K., Shigehiro, H., Hirohito, A., Yoshiaki, H., and Shuichi, T., "Performance and stability of mask process correction for EBM-7000", **Proc. Of SPIE,** Vol. 7748, pp.774814-1, 2010.
- [8] Dai Tsunoda, Masahiro Shoji, and Hiroyuki Tsunoe, "Proximity Effect Correction Concerning Forward Scattering", Proc. Of SPIE, Vol. 7823, pp. 78233D-1, 2010.
- Christophe Pierrat and Ingo Bork, "Impact of Model-Based Fracturing on E-beam Proximity Effect Correction Methodology", Proc. Of SPIE, Vol. 7823, pp. 782313-1, 2010.
- [10] Fujimura, A., Pierrat, C., Kiuchi, T., Komagata, T., and Nakagawa, Y., "Efficiently Writing Circular Contacts on Production Reticles," Proc. Of SPIE, Vol. 7748-49, 2010.
- [11] Zable, H. R., Fujimura, A., Komagata, T., Nakagawa, Y., and Petersen, J. S., "Writing "Wavy" Metal 1 Shapes on 22nm Logic Wafers with Less Shot Count", Proc. Of SPIE, Vol. 7748-60, 2010.
- [12] Fujimura, A., Kim, D., Komagata, T, and Nakagawa Y, "Best Depth of Focus on 22nm Logic Wafers with Less Shot Count, " Proc. Of SPIE, Vol. 7748-50, 2010.
- [13] Fujimura, A., Kim, D., Bork, I., and Pierrat, C., "Writing 32nm-hp Contacts with Curvilinear Assist Features," Proc. Of SPIE, Vol. 7823-6,
- [14] Fujimura, A., Kamikubo, T., and Bork, I., "Model-based mask data preparation and impact on resist heating," Proc. Of SPIE, Vol. 7970-37,

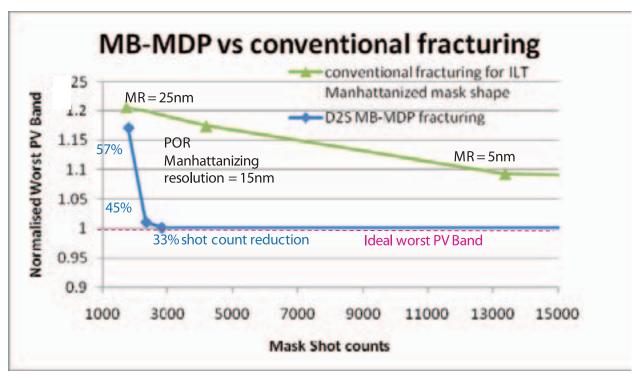


Figure 17. Dependency of the normalized worst PV band on shot count for Manhattanized masks and MBMDP masks using the Ideal ILT shapes as target. While the mask quality degradation is small for MB-MDP masks at shot count reductions up to 45% compared to the Manhattanized mask with 15nm resolution, all Manhattanized masks show a quality degradation compared to the ideal mask.

N • E • W • S

Sponsorship Opportunities

Sign up now for the best sponsorship opportunities for Photomask 2012 and Advanced Lithography 2012.

Contact:

Teresa Roles-Meier Tel: +1 360 676 3290 teresar@spie.org

Advertise in the **BACUS News!**

The BACUS Newsletter is the premier publication serving the photomask industry. For information on how to advertise, contact:

> Teresa Roles-Meier Tel: +1 360 676 3290 teresar@spie.org

BACUS Corporate Members

FUJIFILM Electronic Materials U.S.A., Inc. Gudeng Precision Industrial Co., Ltd. HamaTech APE GmbH & Co. KG Hitachi High Technologies America, Inc. Ibss Group, Inc. JEOL USA Inc. KLA-Tencor Corp. Max Levy Autograph, Inc. Mentor Graphics Corp. Mentor Graphics Corp. Molecular Imprints, Inc. Plasma-Therm LLC Raytheon ELCAN Optical Technologies **XYALIS**

$N \bullet E \bullet W \bullet S$

Industry Briefs

E-beam Costs to Soar in Multi-Patterning Era

By Mark LaPedus, SemiMD

A mask-set for microprocessor has about 40 to 60 layers. Some 20 to 30 percent or so of those layers are critical, and must be processed via e-beam. The other layers are processed via laser pattern generators.

For years, electron-beam tools have been used to write the critical layers for a photomask, but these machines have been considered too slow and a bottleneck in mask production. As the IC industry moves into the multiple patterning era, the e-beam could fall further behind the curve, possibly causing a spike in photomask costs and product delays. The new e-beams are running at the same speeds - or slightly faster - than before, but they must now process more photomask layers. In multiple patterning, mask makers may end up buying more mask writers to keep up in photomask production, warned G. Dan Hutcheson, CEO of VLSI Research.

Not long ago, an e-beam sold for about \$10 million per unit. Now, they range somewhere from \$20 million to below \$50 million each, depending on the configuration. The two major e-beam vendors - JEOL Ltd. and NuFlare Technology Inc. - have separately begun shipping their latest e-beams for developing next-generation photomasks, especially for the multiple patterning era. JEOL is shipping the JBX-3200MB, a 50-KeV tool that is faster than previous versions. NuFlare is delivering the EBM-8000.

Meanwhile, the industry is rolling out various design-for-manufacturing (DFM) tools to speed up the e-beam. And thankfully, mask costs are not soaring out of control. At one time, there were fears that a mask-set would run a whopping \$10 million at the 22nm node, said Walden Rhines, chairman and chief executive of Mentor Graphics Corp. The reality is that photomask costs are moving more at a "linear" path, Rhines said at BACUS. The early 45nm "mask sets" hit the dreaded \$1 million barrier, but ASPs have fallen as these reticles moved into volume production, according to experts. The initial 28nm "mask sets" are expected to be around \$2 million, but ASPs will drop over time. And a 22/20nm mask could be around \$4 million in the beginning.

At 45nm, chip makers began to implement some double pattering techniques, such as line cutting and spacer. Beyond 45nm, chip makers may be forced to use more complex double-patterning methods, such litho-etch-litho-etch, litho-freeze-litho-etch, sidewall spacer, among others. Today, the problems are even more acute. Extreme ultraviolet (EUV) lithography is late, forcing the industry to extend 193nm lithography, thereby adding more complexity to the mask. For example, Toshiba Corp. is pushing 193nm immersion down to 19nm for NAND, thanks to self-aligned double patterning (SADP). In logic, Intel Corp. has said it plans to extend 193nm immersion down to 14nm, with the help of multiple patterning. Intel hopes EUV will be ready at 10nm. As a result, photomask makers must develop more complex masks. The average write time per mask layer is around 3.3 hours right now, a decrease from those in 2010, according to a survey from Sematech. But the average maximum write time per layer for a mask is 33.2 hours right now, up 15 percent over 2010, according to the survey.

Join the premier professional organization for mask makers and mask users!

About the BACUS Group

Founded in 1980 by a group of chrome blank users wanting a single voice to interact with suppliers, BACUS has grown to become the largest and most widely known forum for the exchange of technical information of interest to photomask and reticle makers. BACUS joined SPIE in January of 1991 to expand the exchange of information with mask makers around the world.

The group sponsors an informative monthly meeting and newsletter, BACUS News. The BACUS annual Photomask Technology Symposium covers photomask technology, photomask processes, lithography, materials and resists, phase shift masks, inspection and repair, metrology, and quality and manufacturing management.

Individual Membership Benefits include:

- Subscription to BACUS News (monthly)
- Complimentary Subscription Semiconductor International magazine
- Eligibility to hold office on BACUS Steering Committee

spie.org/bacushome

Corporate Membership Benefits include:

- Three Voting Members in the SPIE General Membership
- Subscription to BACUS News (monthly)
- One online SPIE Journal Subscription
- Listed as a Corporate Member in the BACUS Monthly Newsletter

spie.org/bacushome

2012

Advanced Lithography

12-16 February 2012 San Jose Convention Center and San Jose Marriott San Jose, California, USA spie.org/alcall

Submit your Abstracts Now!

SPIE Photomask Technology

10-13 September 2012 Monterey Marriott and Monterey Conference Center Monterey, California, USA spie.org/pm

You are invited to submit events of interest for this calendar. Please send to lindad@spie.org; alternatively, email or fax to SPIE.

SPIE is an international society advancing light-based technologies.

International Headquarters P.O. Box 10, Bellingham, WA 98227-0010 USA Tel: +1 888 504 8171 or +1 360 676 3290 Fax: +1 360 647 1445 help@spie.org • SPIE.org

Shipping Address 1000 20th St., Bellingham, WA 98225-6705 USA

SPIE Europe

2 Alexandra Gate, Ffordd Pengam, Cardiff, CF24 2SA, UK

Tel: +44 29 2089 4747 Fax: +44 29 2089 4750

spieeurope@spieeurope.org • www.spieeurope.org