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ABSTRACT
With the VLSI technology shrinking to 7nm and beyond, the Redundant Local Loop (RLL), also known as via 
pillar, becomes a promising candidate of redundant via insertion due to its compatibility with the unidirec-
tional layout style. Existing RLL insertion approaches only leverage rule-based heuristics for manufacturing 
constraints, which can no longer obtain a large enough Process Window (PW) in advanced technology 
nodes. It is imperative to develop new techniques to optimize lithography process window while inserting 
RLL to achieve a good yield. In this paper, we propose a machine learning-based litho-aware RLL insertion 
framework. Conventional lithography simulation requires tremendous computational resources to evaluate 
the lithography quality accurately, which is not feasible for process window exploration. We formulate the 
lithography simulation as a regression task and develop a customized Conventional Neural Network (CNN) 
architecture to predict the Depth of Focus (DOF), a standard metric for evaluating process window. We 
propose a complete ow for litho-aware RLL insertion based on the CNN model for process window evaluation. 
The commercial lithography simulator evaluates the effectiveness of the proposed framework. Experimental 
results demonstrate that our lithography model can predict the DOF with high accuracy and generalize well 
on unseen patterns while achieving orders of magnitude speedup compared to conventional lithography 
simulation. Our litho-aware RLL insertion framework can effectively improve the lithography process window 
with comparable runtime and insertion rate compared to the state-of-the-art method.

1. Introduction
With the continuous scaling of semiconductor technology nodes, redundant via insertion becomes a pivotal 
technology to improve yield. In advanced technology nodes with the unidirectional routing style, conventional 
methods of inserting redundant vias have become obsolete because they introduced metal shapes in the 
non- preferred direction. Fig. 1(b) shows that traditional redundant via insertion introduces Metal-3 (M3) wire 
bending in the non-preferred direction. To overcome this issue, Redundant Local Loop (RLL), also known 
as via-pillar, is proposed to ensure the consistent direction of each metal wire with the design rules while 
introducing redundant vias (Fig. 1(c)). Recent works1, 2 are proposed to optimize the delay and performance 
of chips in RLL insertion. Xu et al.3 propose a rule-based algorithm for RLL insertion considering advanced 
manufacturing constraints.
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Figure 1. (a) single via, (b) traditional redundant via insertion with wire bending, (c) redundant local loop that 
compatible with one-dimensional routing.
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Editorial  
COVID and War – Horrors, 
Challenges, and Opportunities
Artur Balasinski, Infineon Technologies
History is as cruel as it is ironic – everybody knows that. In the wake 
of COVID-19, those who survived can now enjoy a lifestyle benefit 
earlier unheard of: wide acceptance of working from home and 
overall, computerized presence. Our lives just became more remote-
controlled, quite to our own advantage as the BACUS Community 
making the masks, which make all this possible. 

What else just became remote-controlled? Why, the battlefield. While 
the outcome of the fighting in Ukraine is still unknown, one thing is 
clear: A remote-controlled missile is as good as a tank. They cancel 
each other out. Some people are taking it one step further, saying 
that such a missile, if advanced enough, can be as good an aircraft. 
Such painful comparisons are taking the arms race to a completely 
different level, perhaps to the advantage of the military defending 
their territory over those trying to move in. At any rate, there seems 
to be a big engineering opportunity to propose a new battlefield 
model and maybe alleviate some of that pain and cruelty. 

As scary and brutal as this new challenge for mankind currently is, 
perhaps there would be some other silver lining at the end of it, just 
as for the aftermath of COVID. Ukraine is a highly technologically 
capable nation, having contributed over the course of the years to 
mathematics, aeronautics, avionics, nuclear science, and recently, to 
the IT sector. This, in addition to their Cossack spirit (from the Turkic 
“kazak” – meaning “free man”), would make them fierce competitors, 
not just in war but in technology too. Many companies have currently 
strong footholds in Ukraine. Perhaps the blood-related attention the 
country is getting now will help it gain manufacturing strength in the 
years to come. 

What can we, as the BACUS community, do about it? We should 
promote engineering projects and scholarships seeking out technical 
talent in Ukraine to foster technology development based on the 
resources available in that country. We should better understand the 
current situation at their universities and establish contacts to run 
joint projects. Surely the omnipotent computerized presence based 
on the COVID experience would come in handy. We should reach 
out to propose free participation in meetings and conferences as the 
stepping stone for mutual learning. Establishing such ties would help 
both our prospective partners and ourselves realize our common 
goals, in technology and in life. 
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Nevertheless, such approaches can no longer obtain a large enough 
process window in advanced technology nodes. It is imperative to de-
velop new techniques to optimize lithography while inserting RLL to 
achieve a good yield. In this paper, we propose a machine learning-
based litho-aware RLL insertion framework. Conventional lithography 
simulation requires tremendous computational resources to accurately 
evaluate the lithography quality, which is not feasible for process win-
dow exploration. Considering the fact that machine learning approach-
es have demonstrated superior computational efficiency to traditional 
simulation methods, we formulate the lithography process window 
simulation as a regression task and develop a customized conventional 
neural network (CNN) architecture to predict the Depth of Focus (DOF), 
a standard metric for evaluating lithography process window. This pro-
posed framework can trade-off between accuracy and runtime. The ma-
jor contributions of this paper are highlighted as follows.
•	The lithography process window prediction problem is formulated as 

a regression task without lithography simulation.
•	The CNN network is developed to achieve both high accuracy and ef-

ficiency.
•	Experimental results demonstrate that our framework can increase 

the average lithography process window by 1.8% for benchmarks at 
10nm technology node with comparable insertion rate to sate-of-
work.3
The rest of this paper is organized as follows. Section 2 reviews the 

basic concepts and gives the problem formulation. Section 3 provides a 
detailed explanation of the proposed framework. Section 4 reports the 
experimental results. Finally, Section 5 concludes the paper.

2. Preliminaries
In modern VLSI redundant via insertion, the optimization usually includes 
multiple objectives, such as wirelength and the number of vias. A larger 
number of vias and wirelength leads to a considerable timing impact of a 
local loop structure4 and difficulty for post stages. In practice, the solution 
that neglected the above metrics may result in congestion and failure. 
Hence, the RLLs with less redundant vias and wirelength are preferred. 
We adopt the cost metric in this work, considering both wirelength and 
the number of vias.

Definition 1 (Cost). Cost c € RR evaluates the cost of an RLL structure 
with N metal layers and N ⎯ 1 via layers, which is defined as follows:

        N                 N−1
c = ∑ aimi + ∑ βivi,					              (1)
          i=0                        i=0

where a, β are user-defined parameters, mi denotes the redundant 
wirelength on the ith metal layer, vi denotes the number of redundant 
vias on the ith via layer.

In advanced technology nodes, the cost is not enough to evaluate an 
RLL structure. Different RLLs with similar costs may lead to distinctive 
yield impacts. So, we select the depth of focus (DOF) metric to evaluate 
the lithography of a pattern.

Definition 2 (DOF). DOF € RR evaluates the performance of optical 

lithography. It can be defined as the range of focus that keeps the re-
sist profile of a given feature within all specifications over a specified 
exposure range.

In practical semiconductor lithograph, DOF generally depends on re-
sist, process parameters, and imaged patterns. Therefore, DOF is gen-
erally obtained by lithography simulation. In this work, we introduce 
a lithography machine learning model to speed up the simulation ow, 
evaluated by Mean Absolute Percentage Error (MAPE).

Definition 3 (MAPE). MAPE € RR evaluates the prediction accuracy of 
the proposed lithography model:

              100 n    ŷi - yiMAPE= ⎯ ∑ ⎟ ⎯⎯ ⎟ 				            (2)
              

n
  i=1      

yi

where yi is the actual DOF value obtained by lithography simulation, 
and ŷi is the predicted DOF value.

With all the metrics defined, the redundant local loop insertion in the 
unidirectional layout is defined as follows:

Problem 1 (Lithography Model). Given a dataset containing the la-
belled data, pairs of layout patterns, and corresponding DOFs obtained 
by lithography simulation, train a model that can accurately predict a 
given layout pattern’s DOF (i.e., minimize MAPE).

Problem 2 (Redundant Local Loop Insertion). Given the unidirection-
al routing design and design rules, produce a legal RLL insertion solu-
tion with optimized insertion rate, total cost, and lithography quality.

3. Litho-Aware RLL Insertion Framework

3.1	 Data Preparation
For training the proposed lithography model, a labelled dataset is needed. 
The dataset includes 900 randomly selected 1.04 x 1.04 mm2 clips of each 
metal layer, and Mask Optimization (MO) has been applied to those clips 
to obtain the corresponding DOFs. The original layout data format (GDS II) 
is composed of succeeding vertex coordinate lists. Therefore, we encode 
these vertex coordinates into pixels. In our work, the routing solutions 
are based on a routing grid model, and the 1.04 x 1.04 mm2 clips can be 
pixeled into binary images of size 52 x 52 pixels without loss. For a better 
representation under the optical proximity effect, 5.04 x 5.04 mm2 clips 
centred on selected clips are pixeled into binary images of size 252 x 252 
pixels. The dataset is divided into two parts: 50% are preprocessed for 
CNN model training, while 50% are used for validation. Rotation and are 
applied to the training dataset to obtain various layout patterns further.

3.2	 Convolutional Neural Network Architecture
Convolutional Neural Networks (CNN) have been proved capable of image 
classification and recognition.5 Convolutional layer, pooling layer, and Fully 
Connected (FC) layer are three main components of CNN architecture. 
The convolutional layer’s parameters consist of a set of learnable filters 
(or kernels), with a small receptive field and apply a convolution operation 
to the input, passing the result to the next layer. As a result, the network 
learns filters that activate when it detects some specific features. Pooling 

Table 1. The CNN architecture.

	 Layper	 Kernel	 Stride	 Output Size	 Layper	 kernel	 Stride   	 Output Size 

	 Conv1-1	 5 × 5 × 4   	 2   	 124 × 124 × 4	 Pool	 1   2 × 2   	 2   	 62 × 62 × 4

	 Conv2-1	 3 × 3 × 8	 1	 62 × 62 × 8	 Conv2-2	 3 × 3 × 8	 1	 62 × 62 × 8
	 Conv2-3	 3 × 3 × 8	 1	 62 × 62 × 8	 Pool2	 2 × 2	 2	 31 × 31 × 8

	 Conv3-1	 3 × 3 × 16	 1 	 31 × 31 × 16	 Conv3-2	 3 × 3 × 16	 1	 31 × 31 × 16
	 Conv3-3	 3 × 3 × 16	 1	 31 × 31 × 16	 Pool3	 2 × 2	 2	 15 × 15 × 16

	 Conv4-1	 3 × 3 × 32 	 1	 15 × 15 × 32	 Conv4-2	 3 × 3 × 32	 1	 15 × 15 × 32
	 Conv4-3	 3 × 3 × 32	 1	 15 × 15 × 32	 Pool4	 2 × 2	 2	 7 × 7 × 32

	 Conv5-1	 3 × 3 × 32	 1	 7 × 7 × 32	 Conv5-2	 3 × 3 × 32	 1	 7 × 7 × 32
	 Conv5-3	 3 × 3 × 32	 1	 7 × 7 × 32	 Pool5	 2 × 2	 2	 3 × 3 × 32

	 FC1	 -	 -	 1024	 FC2	 -	 -	 512
	 FC3	 -	 -	 1		
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layers extract the statistical summary of the previous layer’s local regions 
reducing the feature map dimension. Fully connected layers are used to 
flatten the feature maps extracted from multiple convolution and pool 
operations into a one-dimensional vector to predict the final results. 
The CNN architecture for the DOF prediction problem is summarized in 
Table 1, consisting of five convolution blocks and three FC layers. The first 
convolutional layer filters the input vectors of size 252 x 252 with a kernel 
of size 5 x 5. The remaining convolutional layers with kernels size of 3 x 3 
to obtain a more profound representation. Max-pooling with filter size 2 
x 2 and stride 2 is applied after each convolution block. Three FC layers 
are applied to flatten high-dimensional feature vectors to the final result.

3.3 	ILP Formulation
Problem 2 can be formulated as an assignment problem. In this work, we 
extend the ILP formulation developed in Xu et al.,3 and add a DOF item in 
the objective function to improve the lithography process window. Our 
modifications are highlighted in blue.

max δ∑ nixi – ε ∑ cixi + ζ ∑ pixi	                                                            (3)
            xi                                 xi                                   xi

s.t.          ∑ xi ≤ 1                                                ∀Xj € X                        (3-c1)                                                     
             xi € Xj	

          ∑ xi ≤ 1                                                ∀A  € G ∪ SA             (3-c2)
            xi  € A

          ∑ nik · xi ≤ DBk                                                                     
∀Wk  € W                    (3-c3)

              llci  € Wk	

            xi  € {0,1}                                                             ∀xj  € Xj                        (3-c4)  

Eq. (3) consists of three terms. The first term ∑xi nixi is the total number 
of redundant vias, which improves the insertion rate; The second term 
∑xi cixi aims to reduce the overall cost of inserted RLLs; The third term 
∑xi pixi is used to improve the lithography process window of the target 
design. The custom parameters θ , ε, and ζ can be flexibly set to trade-
off those items.

4. Experimental Results

4.1 	 Experiment setup
We adopt Pytorch6 to implement the CNN model. The experiments ran 
on a 64-bit Linux machine with two 20-core Intel Xeon@2.1 GHz CPUs 
and 64GB RAM. The commercial lithography software Tachyon runs on a 
64-bit Linux machine with four Intel Xeon@2 GHz CPUs and 220GB RAM.

The benchmarks from Xu et al.3 are listed in Table 3. Those benchmarks 
are shrunk to 10nm technology node. This shrinkage will not affect the 
algorithm’s behaviour since Xu et al.3 adopts a grid-based solution strat-
egy.

4.2 	Lithography Model Validation
We use Adam7 as the gradient descent optimizer for model training. The 
learning rate is set to 0:01, the batch size is set to 40, and the maximum 
number of iterations is 1000. The dropout rate is set to 0:5 to prevent 
overfitting. The Mean Squared Error (MSE) is used as the loss function. 
We set  α

i
 (i  € [0, N]) to 1 and  bi (i  € [0, N − 1]) to 5 in Eq. (1). δ and   

ε in Eq. (3) is set to 500 and 1 respectively. ζ is defined as ζ = e4(1 − p
120

), 
where p is the predicted lithography.

We trained two CNN models for M2 and M3, respectively, to further im-
prove the prediction accuracy. This will not introduce too much runtime 
overhead. The maximum iteration of each model is set to 1000. Their 
performances on training and testing datasets are reported in Table 4. 
It can be seen that the prediction accuracy of the two metal layers of 
M2 and M3 are both about 3 %. The runtime to obtain the process win-
dow using the lithography simulation tool exceeds 30 minutes, which 
is related to the scale of the layout. However, it takes about 5 minutes 
to train a CNN model, and the runtime of predicting process window is 
about 3.2 ms. This means that the proposed CNN model is more than 
105  faster than the simulation tool, and the accuracy loss is still within 
a reasonable range. On the other hand, the precision losses can still be 
further reduced. Since the process windows of most benchmarks are 
80~100, the training suffers from a date imbalance issue, hindering the 
achievement of high accuracy. Techniques such as data augmentation, 

	 rlli	 ith RLL candidate

	 ci	 the cost of rlli

	 vi	 the number of redundant vias that llci covers

	 ni	 the number of vias that llci covers

	 pi	 the lithography (i.e., DOF) of llci

	 xi	 the binary variable for llci

	 Xj	 the variable set for the RLLCs covering vi

	 Gk	 the kth set for RLL candidates occupying the same grid

	 SAk	 the kth set for RLL candidates occupying conflicting SAV grids

	 X, G, SA	 set for Xi, Gk and SAk, respectively

	 WK	 the kth density window

	 ni,k	 the number of vias of llci in Wk

	 DBk	 via density upper bound for Wk

	 W	 the set of density window Wk

	 δ,ε, ζ	 custom parameters

Table 2. Notations.

Table 3. Benchmark Statistics.3

	 Metric	 ecc	 efc	 ctl	 alu	 div	 top

	 #via	 4013	 4619	 5873	 6683	 12 878	 48 847

	 #nets	 1539	 1322	 2062	 2138	 3792	 12 988

 #RLLC per via	 47.3	 39.0	 43.7	 32.6	 36.0	 35.2
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	 Dateset	 Model	 MAPE (%)	 TpS (ms) *

	 Training	 M2	 2.77	 3.42	 		
		  M3	 2.46	 4.82

		  Avg.	 2.61	 4.12

	 Testing	 M2	 3.3	 3.26
		  M3 	 3.08	 2.94	

		  Avg.	 3.19	 3.10

Table 4. Experimental result of the CNN models on training dataset and testing dataset.

	 Xu et al.3	 Xu et al.3 (IR-R*)	 Ours

	
Design

	 IR (%)	 PW	 IR (%)	 PW	 IR (%)	 PW

	 top	 83.00	 79.22	 79.24	 80.92	 79.62	 82.3

	 Ratio	 1.00	 1.00	 0.95	 1.02	 0.96	 1.04

	 IR-R: The insertion rate is randomly reduced to close to ours.

Table 5. Comparison of inserting rate (IR) and lithography process window (PW) of different RLL inserting methods.

	 Xu et al.3	 Ours
	 Design	 IR (%)	 #RLL	 #RpR *	 T (s)	 IR (%)	 #RLL	 #RpR *	 T (s)
	 ecc	 98.26	 2542	 2.45	 3.7	 96.61	 2733	 2.58	 3.7
	 efc	 92.35	 2799	 2.45	 3.9	 87.66	 2866	 2.57	 3.9
	 ctl	 95.23	 3543	 2.42	 5.4	 92.56	 3746	 2.55	 5.4
	 alu	 80.40	 3232	 2.34	 5.2	 75.69	 3242	 2.52	 5.3
	 div	 88.12	 7103	 2.40	 11.0	 83.11	 7315	 2.55	 11.2
	 top	 83.00	 24705	 2.36	 37.0	 79.62	 25092	 2.53	 37.5
	 Avg.	 89.56	 7321	 2.40	 11.03	 85.21	 7499	 2.55	 11.17
	 Ratio	 1.00	 1.00	 1.00	 1.00	 0.96	 1.03	 1.06	 1.01
      *#RpR: redundant via number per RLL.

Table 6. Detailed experimental result on benchmarks.

and optimized sampling strategies can address this concern. Due to this 
accuracy meets the requirements of our framework, we leave the explo-
ration in the future.

4.3 	Framework Validation
As mentioned in Problem 2, the goal of the RLL is to maximize the insert-
ing rate to improve the yield and reduce the timing impact of the intro-
duced redundant vias. With the proposed CNN model, we can predict the 
process window of each RLL candidate. In this way, the trade-off between 
the insertion rate and the lithography can be achieved. The insertion rate 
of the proposed framework tends to be reduced compared to Xu et al.,3 
due to that their method takes the insertion rate as the only metric to be 
evaluated. We added a control group (denoted as IR-R) whose insertion 
rate is randomly reduced to the same level as ours to control variables. 
The comparison of our work, IR-R, and Xu et al.3 is reported in Table 5.

The “Ratio” is based on Xu et al.3 as the baseline. It can be seen that we 
can increase the average lithography process window by 4% with com-
parable runtime. Compared with IR-R, we can achieve a 2% more aver-
age lithography process window with a 1% higher insertion rate, which 
means that our framework can effectively trade-off between insertion 
rate and the lithography quality.

Table 6 gives the detailed experimental result on benchmarks. One 

can find that the insertion rate reduction of our framework is within 
the acceptable range (average 4.3 %), and the runtime is comparable. 
Those experimental demonstrate that our litho-aware RLL insertion 
framework can effectively improve the lithography process quality with 
comparable runtime and insertion rate. As the setting of the ε is flexible, 
we can adjust the weight of a lithography item to the requirements of 
real-world applications. This paradigm provides a flexible framework to 
meet the challenge of the DTCO methodology, which is promising at 
advanced nodes.

5. Conclusion
In this paper, we present a litho-aware RLL insertion framework. The 
proposed framework considers the lithography requirements in the RLL 
candidates selection stage. It achieves a trade-off between lithography 
process window and insertion rate compared with the traditional insertion 
algorithm. We also propose a CNN model to estimate the process window, 
which can be 105  faster than the rigorous simulation. The experiments 
show that the proposed framework can improve the average lithography 
process window by 1.8% on benchmarks in 10nm technology node. Future 
work includes developing algorithms to address data mismatch to improve 
the DOF prediction accuracy.
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■	 Tech Chiefs Urge Congress to go Bigger and Faster by Passing 
Semiconductor Funding

Daniel Flatley, Bloomberg

CEOs of some the largest US chip manufacturers lobbied Congress to pass legislation 
including $52B in incentives for the semiconductor industry. The US House and Senate 
have been wrangling with how to combine their different version of the legislation. 
While the legislation has in general bipartisan support, there are a few sceptics, the 
most prominent one being Bernie Sanders from Vermont. 

https://www.bloomberg.com/news/articles/2022-03-23/chip-producers-say-they-
re-ready-to-go-bigger-and-faster

■	 Global Neon Gas Production Falls off a Cliff After Russia’s 
Invasion of Ukraine

Sam Shead, CNBC

A few companies in Ukraine supply about 50% of the global neon gas used in the 
ArF (argon fluoride) excimer lasers which are crucial in the lithography machines. 
Russia’s ongoing in Ukraine could see the production of neon fall to dangerously low 
levels at a time when the world is already struggling with chip shortages.

https://www.cnbc.com/2022/03/25/russia-ukraine-war-laser-neon-shortage-
threatens-semiconductor-industry.html

■	 Shanghai Lockdown and its Impact on Global Economy

Laura He, CNN Business

Shanghai, the largest and most affluent city in China, is in lockdown while it tries to 
contain an outbreak of COVID-19 following its central government’s “dynamic zero 
covid” policy. With more than 800 multinational corporations having their regional 
or country headquarters in Shanghai, the lockdown will ripple through the world 
economy. TSMC, for its part, runs a major semiconductor factory in Shanghai’s 
suburb. Top Chinese chip makers SMIC and Hua Hong Semiconductor have factories 
in Pudong, in the east of the city.

https://www.cnn.com/2022/04/13/business/shanghai-lockdown-global-economy-
explainer-intl-hnk/index.html

■	 Is it Time to Buy Semiconductor Stocks?

Ian Bezek, US News

Semiconductors have started off 2022 on the wrong foot. Through mid-April, many 
of the stocks have been down for more than 20%. This is of course after significant 
stock growth in 2020 and 2021 amid the pandemic. Is this an opportunity to buy? 
The author recommends eight companies amid rising inflation in the US and global 
chip shortages.

https://money.usnews.com/investing/stock-market-news/slideshows/best-
semiconductor-stocks-to-buy-amid-a-global-chip-shortage
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SPIE, the international society for optics and photonics, brings engineers, 
scientists, students, and business professionals together to advance light-
based science and technology. The Society, founded in 1955, connects and 
engages with our global constituency through industry-leading confer-
ences and exhibitions; publications of conference proceedings, books, 
and journals in the SPIE Digital Library; and career-building opportunities. 
Over the past five years, SPIE has contributed more than $22 million to 
the international optics community through our advocacy and support, 
including scholarships, educational resources, travel grants, endowed 
gifts, and public-policy development. www.spie.org.

International Headquarters
P.O. Box 10, Bellingham, WA 98227-0010 USA 
Tel: +1 360 676 3290 
Fax: +1 360 647 1445
help@spie.org • spie.org

Shipping Address
1000 20th St., Bellingham, WA 98225-6705 USA

2 Alexandra Gate, Ffordd Pengam, Cardiff,  
CF24 2SA, UK 
Tel: +44 29 2089 4747 
Fax: +44 29 2089 4750
info@spieeurope.org • spieeurope.org

2022

EMLC 2022
20-23 June
Leuven, Belgium
https://www.emlc-conference.com/ 

	 SPIE Photomask Technology + 
Extreme Ultraviolet Lithography
25-29 September 2022 
Monterey, California, USA
www.spie.org/puv

Corporate Membership Benefits include:
■	 3-10 Voting Members in the SPIE General Membership, 

depending on tier level

■	 Subscription to BACUS News (monthly)

■	 One online SPIE Journal Subscription

■	 Listed as a Corporate Member in the BACUS Monthly 
Newsletter 
spie.org/bacushome
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 About the BACUS Group
Founded in 1980 by a group of chrome blank users wanting a single voice to interact with suppliers, BACUS has grown 
to become the largest and most widely known forum for the exchange of technical information of interest to photomask 
and reticle makers. BACUS joined SPIE in January of 1991 to expand the exchange of information with mask makers 
around the world.

The group sponsors an informative monthly meeting and newsletter, BACUS News. The BACUS annual Photomask 
Technology Symposium covers photomask technology, photomask processes, lithography, materials and resists, phase 
shift masks, inspection and repair, metrology, and quality and manufacturing management. 

Individual Membership Benefits 
include:
■	 Subscription to BACUS News (monthly)
■	 Eligibility to hold office on BACUS Steering Committee

spie.org/bacushome

You are invited to submit events of interest for this  
calendar. Please send to lindad@spie.org.

Join the premier professional organization  
for mask makers and mask users!

h

h

Apply for the 2022 SPIE BACUS Scholarship
The $5,000 SPIE BACUS Scholarship is awarded to a full-time  
undergraduate or graduate student in the field of semiconductor 
lithography with an emphasis on photomask technology and/or 
optical/EUV photolithography technologies. Apply by 27 May 2022. 
https://spie.smapply.io/prog/bacus22_scholarship/
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