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ABSTRACT
Machine learning (ML) has become increasingly powerful and several recent works have demonstrated 
the capability of neural networks to achieve performance gains for lithography applications. Much of 
the general literature on neural networks involves image classification. Application of neural networks 
to lithography requires increased scrutiny. How far can such a system be trusted, and how should we 
respond if the system fails? Neural networks can appear inscrutable and we lack understanding of why 
these systems generalize so well. On the other hand, the benefits neural networks appear to offer, in 
terms of reduced runtime or more accurate models, are compelling. This work will illustrate how two 
techniques, the Information Bottleneck (IB) and t-Distributed Stochastic Nearest Neighbors (t-SNE), that 
can improve our understanding of how neural networks work. We will use a multilayer perceptron for a 
simple resist model implemented with neural networks. We will then discuss how visualization methods 
can help assess the readiness of a neural network for a task, or help diagnose potential causes of failure.

1. Introduction
Machine Learning (ML) is used for diverse applications, including within the field of microlithography.1-3 

Benefits include faster calculations and improved representation of phenomena for which rigorous causal 
understanding is lacking. While machine learning has long been a foundational technology for Optical 
Proximity Correction (OPC) models,4, 5 papers demonstrating powerful new methods have recently been 
published.6-13

Among many useful ML methods, we focus attention on Deep Learning (DL). DL is the training of neural 
networks with multiple hidden layers and very large numbers of free parameters. This neural network 
architecture is called a deep neural network (DNN). Beginning with the AlexNet paper14 researchers over-
came the plagues of prior generations of DNNs, including exploding gradients, vanishing gradients, and 
local minima. Back propagation with mini-batch gradient descent methods and some additional practical 
tricks (for example dropout, Adam optimization, batch normalization, etc.) surpassed prior limitations of 
the DNN training process.15 The adoption of GPUs to accelerate the highly-parallelizable computations 
of DNNs also contributed to the success of DL.
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Figure 1. A simple experiment illustrates how the action of a neural network can be interpreted and visualized 
as a series of encodings of input samples, with sufficient statistics to accurately determine the output class with 
which sample is associated. The input aerial image X is a 27x27 pixel matrix of floats, with each element an aerial 
image intensity signal. The model is a 4-layer perceptron. The first layer encodes the input in a 32 float vector, 
compressing it. Succeeding neuron layers decode the previous layer, and generate new encodings. The final layer 
is a softmax decoder which receives the encoding from the final neuron layer and determines the output class. 
The output class is the percentage of resist coverage for the center pixel in the aerial image, in steps of 10% for 
easier visualization.
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Editorial 
Open Issues in Mask Technology 
as EUV Enters High Volume 
Manufacturing
Moshe Preil and James W Westphal, KLA Corporation
After years of optimistic projections and false starts, 2019 is finally the year 
that EUV will enter volume production. There are over 20 production scanners 
in the field. The combined cost of these tools, including associated equip-
ment, installation and facilities is well into the billions of dollars, and this does 
not include the cost of new buildings currently under construction to support 
volume EUV production.

  Mask shop investment in EUV capable equipment, including writing, in-
spection, metrology, repair, review and cleaning tools as well as related 
infrastructure for storage, transportation, and pellicle support has also been 
substantial. However, in both mask shops and wafer fabs, key questions still 
remain unanswered even as High Volume Manufacturing (HVM) begins in the 
fab. These questions concern technical choices, financial considerations, 
and scheduling, and need to be answered to develop comprehensive, end-
to-end strategies for mask inspection, use, and qualification strategies. For 
example, uncertainty over pellicle technology options and timing cascade 
into a series of questions related to reticle qualification flows throughout the 
lifetime of a mask. 

  Additional uncertainty comes from the lack of data on reticle contamination 
mechanisms during use in high power EUV exposure tools. Prior technologies 
dating back as far as i-line entered production with the assumption that pel-
licles would provide adequate protection for reticles over many thousands of 
exposures. Only later did the industry recognize the occurrence of progressive 
defects (haze or crystal growth, as well as outgassing from pellicle frames) 
and the impact on reticle quality. 

  EUV faces a similar learning curve. Even if pellicles are adopted, the frame is 
not sealed to the reticle surface, and the environment within the scanner is far 
from a perfect vacuum. Concerns over hydrocarbon deposition and reaction 
with intense EUV photons as well as with the out-of-band DUV present in the 
system, will require the development of careful monitoring and re-qualification 
plans. Reticle requalification cycles will be gated not just by the number of 
wafers exposed, but by the number of times a reticle is loaded and unloaded 
from the scanner and how long it sits in storage between cycles. Inspection 
strategies must take into account the difference between long exposure 
“trains” – reticles which expose thousands of wafers between changes – and 
short “trains”, where a reticle may be used for only a few wafers before being 
placed back in storage. We anticipate that a combination of wafer-based and 
reticle-based inspection will be required to fully ensure reticle quality, especially 
if a pellicle solution is adopted which does not allow 193 nm based inspection.

  The many tradeoffs and uncertainties need to be discussed in the context 
of a full, mask blank to wafer fab reticle qualification strategy for EUV volume 
manufacturing. One opportunity for such discussion was the recent edition 
of Photomask Japan, another one, the BACUS Photomask Symposium this 
coming September in Monterey. We hope to see you there!



Application of DNNs to real world problems requires assessment of 
their limitations as well as their capabilities. A person who is excited 
about the idea of self-driving cars may also be cautious about riding 
one. The benefits of offered by a DNN must be compared to the costs 
encountered when it fails. In semiconductor manufacturing a failure 
could be as costly as a bad photo-mask, bad silicon, or a delay in time-
to-market. It is easy to foresee risks in the range of millions of dollars.

The chief risk is that a DNN performs well during training, responds 
poorly when encountering a situation beyond its prior experience. 
Such a model is said to “generalize poorly.” The most surprising fact 
about DNNs is how well they can generalize. They generalize so well 
that they exceed our understanding.16 at the same time they can be 
easily fooled17 Without a clear theory for why they generalize so well, 
it becomes difficult to determine the boundaries within which they 
can be trusted.

Despite these uncertainties, the potential benefits of neural net-
works should not be overlooked. Our intention is to use DNNs where 
beneficial. However we believe that this requires a methodology for 
assessing when they can be trusted.

This paper we will briefly recount the recent history of DL and DNNs, 
and two kinds of methods to help humans interpret them : information 
bottleneck (IB), and t-SNE embeddings. We will conduct an experi-
ment, applying IB and t-SNE to training a neural network model of 
a photo-resist process. Visualizations will show what the network is 
doing while it learns. Through these visualizations we hope to make 
a contribution that will help the reader understand how DNNs work, 
and in particular in the context of problems of lithographic interest.

2. Related Work
After a long period of skepticism concerning the practicality of training 
DNNs, confidence has soared since the 2012 AlexNet paper14 (which 
currently has more than 27,000 citations). Since then, papers have 
demonstrated impressive performance of classification of images, 
translation of literature, voice recognition, and other tasks.

Paradoxically, at the same time that our confidence in the predic-
tions of neural networks is growing, we lack a firm understanding of 
why some models generalize and others do not. Machine learning is 
essentially an inductive process. Classically a model is probably better 

Figure 2. From left to right, we observe a scatter plot of the t-SNE projection as it develops during the course of training. From top to bottom we observe the 
progression from the first layer and downward to the final neuron layer. At epoch zero for all layers we initially see very little organization in the encodings. 
Samples with different classes are scrambled with each other. As training proceeds, the encodings from each layer evolve very differently from each other. 
The first layer, near the input, has compressed the image from 729 dimensions to 32. The compression scheme needs to preserve as much information about 
the input as is necessary to enable the subsequent layers to refine the classification of a sample. The second and third layers compress to 16 and then 8 
dimensions, respectively, and begin to develop more effective separation between the classes. The encoding provided by the final layer is able to represent 
many of the points on nearly one-dimensional manifolds, but there remains confusion about how to distinguish the classes of many of the samples with pixel 
coverage between 30 and 70%. The encoding from the final 8-dimensional layer has become so simple that it can be rendered well with the first two principle 
components, as seen on the bottom four plots. By epoch 240, the encoding has organized most of the samples along a simple bent line with class confusion 
concentrated at the apex.
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if it explains the available data with fewer free parameters. According 
Vapnik-Chervonenkis statistical learning theory18 the error bounds on 
a model’s prediction are proportional to the log of the \hypothesis 
space” of the model. A model with a larger hypothesis space has more 
capacity to learn. But, adding new parameters very rapidly explodes 
the possible number of parameter combinations and therefore the size 
of the hypothesis space. This should rapidly expand the error bounds 
of the model, leading to models that appear accurate but are badly 
over-t. The original AlexNet included more than 62 million free param-
eters,14 trained on a set of just over a million images. Its generalization 
performance exceeded expectations. Several papers followed AlexNet 
with significantly more parameters and showed strong generalization.

DNNs have enough model capacity to memorize all of the data en-
countered during training. A recent paper16 demonstrated that popular 
neural networks architectures feature in recent publications can be 
trained to “t” random data. Such a network cannot be said to have 
learned anything. Yet for unknown reasons, if the data is not random 
and includes a signal rather than pure noise, trained neural networks 
perform surprisingly well.16, 19 No single theory has emerged to convince 
all experts why this is so, although it is an active topic of research.

Although it is not universally accepted, and may not apply to all 
neural networks, the Information Bottleneck theory (IB)20 can be useful 
for quantifying the goals and actions of the hidden layers of a DNN. 
We also find that IB can be combined with the t-SNE method, to al-
low us to visualize what a neural network is doing during training and 
inference. The analysis of the layers according to IB, visualized using 
t-SNE, will be the content of this paper.

2.1 Information Bottleneck
We will briefly review IB theory and then illustrate its application 
to the task of modeling the lithographic formation of a structure in 
photo-resist.

To understand IB we start with a simple description of the super-
vised learning problem. Suppose we have a group of aerial images of 
sampled from specific locations on a wafer, and a collection of resist 
contours extracted from SEM images or simulations. We consider our 
aerial image data a collection of samples xn of a random variable X, 
drawn from a real generator of aerial images according to a probability 
distribution P(X). Likewise the samples of the photoresist contours 
resulting from each input sample xn are samples yn of a random vari-
able Y with probability distribution P(Y).

A resist model is a function f(xn) that returns a value ŷn. The model f 
is parameterized by values q ⊂ Q. The q parameters are learned during 
a training procedure, utilizing the collection of training data pairs (xn; 
pn). The x values are passed into the model, and the resulting predic-
tions ŷ are compared to the true answer y. The different between the 
correct answer and the prediction is evaluated according to some loss 
function L. The training process finds the model parameter values q, 
resulting in a model f(x;q) that can reliably predict ŷ close to y and 
minimize the loss function L. In a good model, predicted values of ŷn 

will closely approximate the observed values of yn. If we withhold some 
of the samples during the training process, we can evaluate how well 
the network generalizes to new data not encountered during training.

According to IB, the network generalizes because it learns to 
discriminate between more or less valuable data in the input, based 
on how determinative it is in relation to classifying the output. The 
IB method suggests that a neural network generalizes well when it 
“compresses” the information content of the input X as much as it can 
without losing the information it needs to predict Y. The reason that 
compression is important is that it reduces the number of dimensions 
needed for representation. If the dimensionality required for representa-
tion of all of the anticipated input samples X can be compressed, then 
the problem of mapping from X to Y is greatly simplified and the size 
of the data set required to learn this mapping could be reduced. If X 
is compressed too much, we lose the information we need to classify 
the sample’s class membership in Y.

The network learns what it can forget, or even what it should ig-
nore, about the input, subject however to the requirement that it can 

still accurately predict the output class. Forgetting some of the input 
information is what helps enable generalization : the earlier network 
layers are forcing the later layers to do the classification job with less. 
One consequence is that the dimensionality of the problem is reduced.

The success of the network will be determined by the final layer. 
We call the inputs to the final layer a new random variable Z. We want 
the dimensionality of Z to be small, so that there are relatively fewer 
parameters to be optimized. On the other hand, if the input is not ad-
equately represented then the final layer will lack the statistical power 
to accurately decide the classes. Mathematically this is equivalent 
to the condition of minimizing H(Z) subject to the constraint that we 
also maximize P(Y|Z). By this account, during the training procedure 
we are learning the parameters that define the encoding of X in terms 
of the encoding Z, or P(Z|X), as well as the free parameters of the 
decoder P(Y|Z).21

More generally, IB suggests that a DNN possessing multiple hid-
den layers can be considered a sequence of encoder/decoder pairs. 
Each layer is decoding the results of the previous layer and then re-
organizing them into a new encoding that it thinks will be useful for 
the task of the next layer. The layers only directly communicate in the 
forward direction when predictions are made. However during train-
ing layers communicate backward to the preceding layer to inform it 
how effectively it is doing its job, so that it can adjust and perform 
better in the future.

2.2 t-SNE
The t-Distributed Stochastic Neighbor Embedding (t-SNE) method22 

converts high-dimensional data sets into two-or three-dimensional 
data sets that can be visualized as scatter-plots. We may consider 
structure in a data set to be the tendency of certain samples to cohere 
in high-dimensional space with nearby similar samples. The t-SNE 
method reduces the dimensionality of the data set, while preserving 
the high-dimensional structure. It is similar to the Principal Component 
Analysis (PCA) dimensionality reduction approach, but is not restricted 
to linear distance mappings between samples, and tends to be more 
effective at keeping dis-similar points far apart rather than grouping 
similar points close together. Intuitively, what t-SNE is doing is similar 
to representing a globe as a two-dimensional printed map, except 
that the globe may be of much higher than three dimensions, and the 
mapping from high- to low-dimension may be non-linear.

For our application, t-SNE provides us a way to visualize the encod-
ings that are the outputs of each layer in the deep neural network. 
Each neuron in the encoding is a dimension in the encoding-space. 
Any given input sample will be located at some point in the high-
dimensional encoding space, and t-SNE provides us a way to see 
where that sample ends up on the encoding-map.

3. Approach
Our approach will be to combine the encoder-decoder and information-
theoretic ideas from IB, and the low-dimensionality representation of 
high-dimensional data provided by t-SNE. This will enable is to present, 
within the limits of a two-dimensional manuscript, the evolution of the 
neural network during the training process.

We propose a simple resist model. The input to the model is the 
aerial image. Due to the band-limiting characteristics of the lens 
aperture, we can represent this signal without information loss on a 
finite grid with sufficient sampling of 20nm. We also assume that the 
influence range of the aerial image upon the resist format is finite. For 
computational convenience we choose an aerial image surrounding 
each resist pixel that is 27x27 pixels. The aerial image sampling pitch 
is 20nm so the total influence range is 540nm on a side. The output 
of the model is the fraction of a small region in the center of the image 
that is “inside” the photoresist after all of the resist processing steps. 
For example a value of 0 for a pixel indicates that a box surrounding 
the pixel is completely free of resist after development, and a value 
of 1 is completely covered. Intermediate values are predicted with a 
relatively granular classification drawn from the set f0.1 0.2 0.3 0.4 0.5 
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0.6 0.7 0.8 0.9g. In principle we can make the classification arbitrarily 
ne, but to simplify color visualization we retain only 11 output classes.

The mathematical form of the model is a multilayer perceptron 
(MLP). To classify a single pixel of the photoresist, the MLP receives 
input from the local 27x27 pixel surrounding aerial image. An MLP 
consists of an input layer, one or more hidden layers, and an output 
layer. Each layer consists of a set of neurons, each connected to all 
of the outputs of the preceding layer. Neurons activate based on the 
collective weighted contribution of their inputs, and according to a 
non-linear response function. We use the sigmoid activation, although 
it should be mentioned that most state-of-the-art neural networks 
use rectified linear units (ReLUs). Also, as a side note, state of the 
art neural network performance is often achieved using a different 
model architecture based on the Convolutional Neural Network. For 
the purpose of this paper, a simple sigmoid-activated MLP retains the 
important functional characteristics that illustrate how neural networks 
function. The techniques can be easily extended to other activations 
and layered architectures. The model is illustrated in Fig.1.

Following the path suggested by the “Information Bottleneck” (IB) 
theory, we now examine each layer of the network as a decoder and 
encoder. The output of each layer is a new encoding of the inputs 
received from the preceding layer. The mechanism for the encoding is 
simple linear algebra in the form of a matrix of weights that captures 
the strength of interaction between each input activation and each 
neuron in the current layer. The weights are learned during a training 
process which follows the back-propagation method. Mispredictions 
of the output class during training motivate adjustments in the weights 
of the network, in a proportion determined by the application of recur-
sive application of the chain rule through each layer in the network. 
We limit our analysis to look only at the neuron activations of each of 
the hidden layers.

If the IB theory is correct then each layer in the neural network is 
filtering out some information about x unnecessary for the task of 
predicting y. Thus at the input we should have a larger information 
content to represent the greater range of possible aerial image con-
figurations, and the information content should diminish, layer by layer. 
As the network learns to throw out information that is not necessary 
for its task, the task itself is simplified. We will test in the next section 
whether this is the case for our resist neural network.

4. Results
We used a training set of 14,000 aerial image sample points, and their 
associated resist coverage classifications as extracted from simulated 
resist contours, to train an MLP resist model. The input aerial image 
was represented as a 27x27 matrix of oats, sampled at 20nm. The 
output Y was a classification representing the fractional coverage of 
the vicinity of the pixel, in steps of 0.1, from a completely uncovered 
0 to a completely covered 1. The MLP included 4 hidden layers and 
a softmax output layer for the final classier. Neuron activations were 
sigmoids. The model was trained by stochastic gradient descent using 
the Adam optimizer in TensorFlow.

Fig.2 shows the encodings produced by the activations of the first 
layer. Each of one of the 14,000 aerial images is represented by a single 
not with a position on the scatter plot, and the target output value is 
encoded by color. The placement of the samples is randomly scattered 
in iteration 0 of the training process (called “Epoch 0” in the DL litera-
ture). As training proceeds, inputs that should be classified similarly 
are clustered close to other similar inputs. The first layer compresses 
the original 27x27 image into 32 neuron activation values, compressing 
the data more than 95%. Clusters are still extended as clouds in the 
first layer in order to preserve information that can distinguish similar 
inputs. Further compression is achieved in the second layer which 
reduces the representational space for the input to 16 activations. 
The third layer, not shown, compresses the input again, down to 8 
activations. By layer 4 the data is now represented in 8-dimensional 
space and similar samples, with regard to output class, are pushed 
close to each other while pushed apart from samples of other classes. 

We can see that although this layer started off scattered randomly in 
Epoch 0 it has started to develop rich structure, and is organizing the 
samples into subsets of the entire t-SNE space and within well-defined 
clusters or manifolds.

According to IB theory, we expect the final layer prior to classification 
to retain the mutual information I(X,Y) sufficient to classify the output. 
The t-SNE representation shows this network partially succeeds and 
partially fails. Some of the classes are well-defined, and show up as 
ribbons in t-SNE space. These ribbons are effectively some kind of line 
traceable in 8-d encoding space and then smashed down into 2D by 
t-SNE. A confusion region is also clear, where samples with different 
classes remain indistinguishable from each other. We would not expect 
to have high confidence about the networks classifications of samples 
with encodings that project into the confusion region.

In the PCA representation of the encodings in the final layer, this 
lower confidence region can be localized near the apex of a bent 
line along which every sample can be represented. This scatter plot 
illustrates the simplicity of representation arrived at by the neural net-
work during the training process, as it ranked each 27x27 input image 
sample point with a position along the nearly one-dimensional line.

5. Discussion
Visualizing the encodings of each layer and interpreting them in light 
of information theory helps us understand what the network is doing 
when it accurately predicts a result for a sample, and also helps us 
diagnose causes of Mispredictions.

For each sample, we can trace back through the network to examine 
its encoding in each layer. If a sample is predicted correctly, in early 
layers the encoding on the t-SNE map should be well-separated from 
samples that have different classes, and it should find other similarly-
classified samples in its vicinity. Conversely, for a Mispredictions, the 
representation of the sample in the early layers may not be able to 
distinguish it from other dissimilar samples, if necessary information 
has been forgotten in the encoding, or the information may be missing 
in the raw input to make an accurate classification. On the other hand, 
if the sample is encoded at some layer of the neural network in such 
a way that it appears isolated from other samples on the t-SNE map, 
this may indicate that the model has not been trained on similar data 
and the encoding may be less trustworthy. More training data may 
be required, or the training data must be evaluated to ensure that it is 
more representative of the data that will really be encountered during 
testing or production. Alternately, the sample may be encoded in a 
t-SNE region that is well-represented by other samples, but those 
other samples are uniformly of a different class. This sample should 
be examined to ensure that the expected class is correct, for it is 
possible that it has been mislabeled. If the sample label is confirmed, 
we can examine the encoding for the sample in each layer and see if 
the sample seems to be encoded in such a way that it is not clustered 
near other samples of the same class.

6. Conclusion
Neural networks are extremely competent at fitting sampled data 
during the training process, and surprisingly effective at generaliza-
tion to correctly classify new samples. They have a large enough 
representational capacity to effectively “memorize” the training data 
set, this does not appear to be what they actually do. Currently we 
lack a definitive explanation of how neural networks generalize, but we 
have applied some promising theories to microlithography problems 
and gained insight. We applied the Information Bottleneck theory to 
interpreting the training process for a resist model. Our demonstration 
illustrated that the network may generalize because successive layers 
learn which aspects of the input they can “forget” while still accurately 
predicting the output. Forgetting unnecessary information enables 
the network to reduce the dimensionality of the problem, preventing 
rote memorization of the inputs. Layers are coaxed, during training, 
into efficiently decoding their inputs and encoding them for the next 
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layer. We also applied the t-SNE method to visualize the encodings 
of each layer as a scatter plot, layer-by-layer and epoch-by-epoch. 
This provided some insight into why the networks work well for some 
samples, and how the network could break down for other samples. 
The resulting plots can be interpreted as a story, where over time each 
layer passes on to the next as implied representation of its inputs. The 
simplification is subject to the constraint that the final layer can still 
perform an accurate classification.
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opportunities 

Photomask Technology +  
EUV Lithography 2019 
Contact: Melissa Farlow,  

Tel: +1 360 685 5596; melissaf@spie.org 

Advanced Lithography 2020
Contact: Teresa Roles-Meier,  

Tel: +1 360 685 5445; teresar@spie.org

Advertise in the  
BACUS News!

The BACUS Newsletter is the premier 
publication serving the photomask industry. 
For information on how to advertise, contact:

Melissa Farlow,  
Tel: +1 360 685 5596 
melissaf@spie.org

BACUS  
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Acuphase Inc.
American Coating Technologies LLC
AMETEK Precitech, Inc.
Berliner Glas KGaA Herbert Kubatz  

GmbH & Co.
FUJIFILM Electronic Materials U.S.A., Inc.
Gudeng Precision Industrial Co., Ltd.
Halocarbon Products
HamaTech APE GmbH & Co. KG
Hitachi High Technologies America, Inc.
JEOL USA Inc.
Mentor Graphics Corp.
Molecular Imprints, Inc.
Panavision Federal Systems, LLC
Profilocolore Srl
Raytheon ELCAN Optical Technologies
XYALIS

■ TSMC Makes Progress on 5nm with Complete Infrastructure Design 
and Risk Production

By Eric Hamilton, TECHSPOT 
TSMC announced that it has completed infrastructure design on its 5nm process node 
that will leverage the company’s second generation of extreme ultraviolet (EUV), as well 
as deep ultraviolet (DUV) lithography. TSMC’s 5nm chips will be aimed at SoC designs, 
5G mobile applications, AI, and high performance computing.
According to early numbers on an Arm Cortex-A72 core, TSMC’s 5nm process will deliver 
1.8 times the density and a 15 percent gain in clock speeds compared to 7nm, and that’s 
based on process refinements alone. TSMC also notes that its second generation of EUV 
will both simplify the manufacturing process and present excellent yield learning, allowing 
the process to mature more quickly.
https://www.techspot.com/news/79541-tsmc-makes-progress-5nm-complete-
infrastructure-design-risk.html

■ SK Hynix Plans to Spend $107 Billion Building Four Memory Chip 
Plants

By Heekyong Yang and Ju-min Park, Reuters
South Korea’s SK Hynix Inc. said it would spend $107 billion building four factories, as the 
memory chip maker seeks to maintain its competitiveness in the face of Chinese efforts 
to become a leading chipmaking nation. 
The chip fabrication plants will be built on a 4.5 million square meter site south of Seoul 
beginning 2022, complementing two existing domestic factories that will receive a separate 
55 trillion won ($49 billion) investment over the next decade. 
The plans for the factories, producing DRAM and next-generation chips, come as 
chipmakers prepare for a surge in demand to power new technology such as fifth-generation 
(5G) communication networks and artificial intelligence, even as a slowdown in smartphone 
sales kills off a two-year chip boom. 
https://www.reuters.com/article/us-sk-hynix-investment/sk-hynix-plans-to-spend-
107-billion-building-four-memory-chip-plants-idUSKCN1QA073

■ Semiconductor Equipment Revenues to Drop 17% in 2019 on 29% 
Capex Spend Cuts

By Robert Castellano, The Information Network
The semiconductor equipment market grew 37.3% in 2017 on the heels of capex spend 
by memory companies in order to increase bit capacity and move to more sophisticated 
products with smaller nanometer dimensions. Unfortunately, these companies overspent 
resulting in excessive oversupply of memory chips. As memory prices started dropping, 
these companies put a halt to capex spend, and global equipment revenues increased 
only 13.9% in 2018. As excess inventory continues to increase in 2019, capex spend by 
these companies is projected to drop 29%, which will result in a significant reduction in 
equipment revenues in 2019.
https://seekingalpha.com/article/4251198-semiconductor-equipment-revenues-drop-
17-percent-2019-29-percent-capex-spend-cuts

■ Bruker Announces Acquisition of RAVE LLC 

PRNewswire
Bruker Corporation announced that it has acquired the semiconductor mask repair and 
cleaning business of RAVE LLC, a leading provider of nanomachining and laser photomask 
repair equipment. For calendar year 2018, the acquired business was profitable and 
had revenues of approximately $25 million. Financial details of the transaction were not 
disclosed, and the business has now become part of Bruker’s semiconductor metrology 
division.
The acquired business, which will continue to be operated in Delray Beach, Florida, has 
built a strong reputation around its comprehensive portfolio of nanoprobe and laser-based 
photomask repair products, as well as CO2 cryo-cleaning technology for photomask and 
wafer applications. The acquisition adds to Bruker’s leadership position in automated 
atomic force microscopy (AFM) for semiconductor photomask and wafer metrology. The 
combined offering uniquely positions Bruker’s Semiconductor division to offer unmatched 
solutions for nanomachining mask repair and cleaning, as well as metrology for advanced 
nodes for EUV and multi-patterning lithography.
https://www.prnewswire.com/news-releases/bruker-announces-acquisition-of-rave-
llc-300823469.html
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SPIE is the international society for optics and photonics, an educational 
not-for-profit organization founded in 1955 to advance light-based science, 
engineering, and technology. The Society serves nearly 264,000 constituents 
from 166 countries, offering conferences and their published proceedings, 
continuing education, books, journals, and the SPIE Digital Library in support 
of interdisciplinary information exchange, professional networking, and patent 
precedent. SPIE provided more than $4 million in support of education and 
outreach programs in 2018. spie.org

International Headquarters
P.O. Box 10, Bellingham, WA 98227-0010 USA 
Tel: +1 360 676 3290 
Fax: +1 360 647 1445
help@spie.org • spie.org

Shipping Address
1000 20th St., Bellingham, WA 98225-6705 USA

Managed by SPIE Europe 
2 Alexandra Gate, Ffordd Pengam, Cardiff,  
CF24 2SA, UK 
Tel: +44 29 2089 4747 
Fax: +44 29 2089 4750
spieeurope@spieeurope.org • spieeurope.org

2019

The 35th European Mask and  
Lithography Conference, EMLC 2019
17-19 June 2019
Hilton Hotel Dresden
Dresden, Germany

SPIE Photomask Technology +  
EUV Lithography 
15-19 September 2019
Monterey Conference Center and  
Monterey Marriott
Monterey, California, USA

2020
SPIE Advanced Lithography
23-27 February 2020 
San Jose Marriott and  
San Jose Convention Center  
San Jose, California, USA

Corporate Membership Benefits include:
■ 3-10 Voting Members in the SPIE General Membership, 

depending on tier level

■ Subscription to BACUS News (monthly)

■ One online SPIE Journal Subscription

■ Listed as a Corporate Member in the BACUS Monthly 
Newsletter 
spie.org/bacushome
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 About the BACUS Group
Founded in 1980 by a group of chrome blank users wanting a single voice to interact with suppliers, BACUS has 
grown to become the largest and most widely known forum for the exchange of technical information of interest 
to photomask and reticle makers. BACUS joined SPIE in January of 1991 to expand the exchange of information 
with mask makers around the world.

The group sponsors an informative monthly meeting and newsletter, BACUS News. The BACUS annual Photomask 
Technology Symposium covers photomask technology, photomask processes, lithography, materials and resists, 
phase shift masks, inspection and repair, metrology, and quality and manufacturing management. 

Individual Membership Benefits 
include:
■ Subscription to BACUS News (monthly)

■ Eligibility to hold office on BACUS Steering Committee

spie.org/bacushome

You are invited to submit events of interest for this  
calendar. Please send to lindad@spie.org; alternatively, 

email or fax to SPIE.
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Join the premier professional organization  
for mask makers and mask users!
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