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ABSTRACT
We investigated off-line metrology for LER determination in low-dose SEM images to 
reduce the acquisition time and the risk of shrinkage. Our first attempts are based on 
filtering noisy (experimental) SEM images and use peak detection to measure the edge 
displacements and calculating the discrete PSD. However, the result of the filtering is that 
the power spectrum of the filter leaks into the PSD. So it is better to avoid a filter at all. We 
subsequently developed a method to detect edge displacements without the use of a filter. 
This method considers the signal profile of a SEM by integrating an experimental image of 
lines in the direction of the edges. The signal profile of an isolated edge is modeled as two 
merged Gaussians. This signal profile is then fitted against the raw (unfiltered) data of the 
edge pattern using an interior trust-region-reflective minimization procedure. This gives the 
edge displacements without the use of a filter and a filter-free version of the discrete PSD 
is obtained. The determination of edge displacements without the use of a filter, enables 
us to study how much noise is acceptable and still determine LER. To answer this question 
we generate random lines using the model of Palasantzas and the algorithm of Thorsos.
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Figure 1. Recorded image of line edges using a CD-SEM. The field size is 2.755 µm in length (1024 pixels) and 
450 nm wide (1024 pixels). The pixel size is approximately 2.7 nm x 0.4 nm.



Editorial
Slow, Steady . . . EUV
Wilbert Odisho, KLA-Tencor Corporation

Everyone is closely monitoring industry progress on the next-generation lithography 
solutions that leading chip manufacturers are exploring. While KLA-Tencor is not in the 
position to conduct its own investigation of possible advanced patterning solutions, we 
believe EUV lithography (EUVL) is the most direct path for patterning below the 10nm 
design node. It’s a bumpy path, with every two steps forward being met with a step 
backwards, but forward progress is being made and the momentum towards imple-
menting EUVL is unstoppable. Additional patterning technologies, such as Directed 
Self-Assembly (DSA), e-beam direct write, and 193i multi-patterning techniques are 
also being actively explored by IC manufacturers, and going forward, they may choose 
one or more of these alternate patterning paths. Our role is to enable process control 
and fast yield ramps as chipmakers travel along any of these routes, and as such, we 
have comprehensive inspection and metrology roadmaps to support this diverse range 
of advanced patterning solutions.

Our road to supporting EUVL began in 2008, when we gathered scientists and 
researchers from around the world to form a team focused on EUV Actinic Patterned 
and Blank Mask Inspection (APMI) technology development. We call this the 710 pro-
gram – the seventh generation mask inspection platform in the Reticle and Photomask 
Product Division (RAPID).  It is the largest platform program in our history – large in so 
many aspects, from physical size, costs and technical challenges to resulting innova-
tions, engineering talent and collaborations. The 710 program’s objective is to enable 
at-wavelength mask defect detection and disposition to support EUV lithography in 
the high volume manufacturing (HVM) environment. 

The industry has lived through EUVL HVM insertion timing uncertainty for a number 
of years now, and as we move along this road with an elusive finish line, we’re seeing 
new requirements on the horizon – such as a pellicle for the EUV mask, higher NA 
scanner optics and its requirements for mask size and magnification. We expect key 
EUVL technology suppliers will not stop or slow down their efforts to close the gaps on 
EUVL production readiness. We are not an exception. We must stay on track to meet 
our key customers’ needs. Our 193nm-based mask inspection platform, the Teron 630 
Series, provides inspection capability for both blank and patterned EUV masks which 
we believe will meet near-term pilot production defectivity learning requirements. In the 
meantime, we continue collaborating with our strategic partners and suppliers through 
periodic technical and business exchanges to jointly address new challenges and 
identify promising opportunities in relation to enabling technologies and cost manage-
ment. We and our customers believe Actinic Patterned Mask Inspection technology 
is necessary for success in EUV lithography, especially since it is the only solution for 
through-pellicle inspection. 

One key challenge we face is the magnitude of the investment we need to make to 
support our next-generation patterning defect control solution for reticles. We firmly 
believe this investment is important, even though the total available market size for this 
platform will likely be small. We have formed a Product Readiness Partnership program 
with key customers focusing on concept and feasibility investigations and have suc-
cessfully developed a viable system architecture. Moving forward, we are collaborating 
with our customers even more closely to further reduce business and technical risks.

What’s next? We are continuing along our APMI path, moving forward with our con-
cept development and risk reduction activities. Significant effort has been spent on 
achieving ultra-clean vacuum levels to protect optics from contamination in order to 
have a production-worthy APMI system. We now have the latest-generation EUV light 
source installed on a new chamber and testing is in progress. Our in-house vacuum 
particle test fixture has identified particle generation sources, helping our engineers 
to substantially improve particle per reticle pass performance. In addition, we are 
constantly seeking ways to manage the costs more effectively, as it is the fact that 
APMI development poses a large financial challenge. Overall, through our customer 
collaborations and engineering innovations, we expect our APMI technology path will 
merge with EUVL when it’s ready to make the step forward into production. 
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This gives random generated edge displacements for typical 
values of experimental lines for the parameters of the model: 2 
µm long lines (256 pixels), a correlation length e of 25 nm and a 
roughness exponent a of 0.75. A noise-free top-down SEM-like 
image of lines is created by shifting the profile signal accord-
ing to the random generated edge displacements. The image 
is further processed by adding Poisson-distributed noise. We 
consider three noise cases where the average electron density 
is about 2, 20 and 200 electrons per pixel. This corresponds to 
a charge density of (in respective order) 10 µC/cm2, 100 µC/
cm2 and 1000 µC/cm2. The edge displacements of the random 
generated images are determined using our new developed 
filter-free displacement detection. The difference between the 
random generated displacements and the detected displace-
ments (after adding Poisson-distributed noise) shows how pixel 
noise translates to noise in edge displacements. We conclude 
from running many simulations that this pixel noise translates 
to a noise in the edge displacements which is uniform (flat line) 
in the PSD. This means that pixel noise is classified as white 
noise in the edge displacements. Finally, we study simulated 
discrete PSDs as a function of the number of averages and 
analyze the convergence of the parameters (s, sn, e and a) of 
the Palasantzas model extended with a white noise term. One 
of the conclusions is that a very noisy image with 12 lines and 
about 2 electrons per pixel on average (charge density ≈ 10 
µC/cm2) already produces an estimation for LER with a relative 
error of about 10%.

1. Introduction
The determination of Line Edge Roughness (LER) and Line 
Width Roughness (LWR) becomes increasingly important as 
the semiconductor devices decrease in dimensions[1,2,3]. This 
results in smaller tolerances on LER/LWR and as a conse-
quence, the metrology becomes more critical.

There are two classes of LER metrology. There is on-line 
metrology, which is typically performed in SEMs combined with 

dedicated (proprietary) software for LER analysis. Another class 
is off-line metrology and only deals with the image analysis. The 
latter is used for instance for resist characterization. Examples 
of off-line metrology are described by[4,5,6,7]. Typically in LER 
analysis, the fluctuations in edge displacements are determined 
by using a Canny-edge detection filter or by a homemade 
edge detection algorithm, see for example[4]. Although the 
edge displacements are already a direct measurement of the 
roughness, LER is best analyzed by the Power Spectral Density 
(PSD). There are a couple of problems related to this type of 
determination. First of all, there are statistical and systematic 
errors because the actual PSD is approximated by sampling 
the edge displacements of a pattern with a finite number of 
measurement intervals. The statistical errors are described by[8]. 
The systematic errors have recently been studied by[9]. There 
is also the problem of shrinkage, where the act of measuring 

Figure 3. This image shows the calculated discrete PSD obtained from 
analyzing the set of images from J. Jussot (see figure 1). The markers 
correspond to different strengths of the symmetric two- dimensional 
Gaussian filter. The bottom figure shows the cumulative sum, which gives 
the total s via Parseval’s relation given by equation 4. Note that the total s 
becomes a function of the filter.

Figure 2. Amplitude of a single horizontal scan-line taken from the center of 
figure 1. The top figure is the raw (unfiltered) signal. This signal is too noisy 
for edge detection, therefore a Gaussian filter is applied (bottom figure).
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the edge displacements by irradiating with an e-beam induces 
changes in the pattern, see for example[5,7,10]. Finally, it takes 
a long time to obtain good low-noise images, which are now 
required for edge detection. In this article we focus on off-line 
metrology and investigate how much noise is acceptable by 
decreasing the dose in simulated top-down SEM-like images 

and analyze how many images of the edges are required for 
estimating LER-related parameters.

2. Line Edge Determination
An example of a top-down SEM image of line edges is given 
in figure 1, which was recorded by J. Jussot from CNRS-LTM/
CEA-LETI in 2012. The properties of the resist are unknown to 
us due to disclosure restrictions. In figure 2a we illustrate the 
amplitude of a single horizontal scan-line taken from the center 
row of image 1. Peak based detection algorithms, such as the 
Canny-edge detector, often do not find the edge or find too 
many edges in such noisy data. Working with low-noise images 
has two problems: (1) They take a long time to accumulate and 
(2) there is a risk of resist shrinkage. An obvious way to reduce 
the noise is to apply a filter to the recorded image. By applying 
a filter we reduce the noise in the signal, which is illustrated 
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Figure 4. Image of approximated SEM signal profile. This profile is obtained 
by integrating figure 1 in the direction of the edges.

Figure 5. Illustration of the signal profile of an isolated edge of figure 4.

Figure 6. Illustration of minimizing the model for the signal profile in the 
unfiltered data by varying the horizontal displacement and vertical scale of 
the merged Gaussians.

Figure 7. This image shows the calculated discrete PSD obtained from 
analyzing the set of images from J. Jussot (see figure 1). The square 
markers correspond to the weakest filter of figure 3a. This figure also 
includes the discrete PSD obtained by fitting the profile signal against the 
experimental image. The bottom figure shows the cumulative sum, which 
gives the total s via Parseval’s relation (equation 4).



in figure 2b. At this point edge detection is possible and the 
edge displacements along the line are measured.

The discrete PSD of the edge displacements is obtained by 
calculating the amplitude of the Fourier coefficients,

Where the discrete Fourier transform is determined as,

Where N is the number of sampled edge displacements, xj 
the displacement of the jth edge position, (x)N the mean position 
of the edge, Dy the measurement interval and kn the discrete 
wavenumber i.e.,

Where n = 0, 1, 2, . . . ,N – 1 and L the length of the edge. 
The following identity relates the variance of the edge displace-
ments to the PSD,

Which is Parseval’s relation. The discrete PSD given by 

equation 1 is only an approximation to the actual spectrum of 
a quasi-infinite long line and the finite edge length L is a source 
of statistical noise, see for example[8]. The statistical noise in 
the discrete PSD is reduced by averaging over many lines,

Where N* counts the number of lines over which the PSD 
is averaged.

We calculated the discrete PSD of the edges illustrated in 
figure 1 by using about 50 different recorded images of line 
edges of the same kind. Each image is at first processed with 
a symmetric two-dimensional Gaussian filter with strength sF. 
The edge displacements are then measured using a homemade 
edge detection algorithm. The results of using filter strength sF 
≈ 3 pixels (cross markers), sF ≈ 6 pixels (square markers) and sF 
≈ 9 pixels (circular markers) are given in figure 3a. In figure 3b 
we plot the square root of the cumulative sum of the PSD from 
the lowest wave number towards the higher wave numbers. 
This cumulative sum gives the variance via Parseval’s relation 
(equation 4) and by taking the square root we can see how the 
standard deviation develops as a function of wave number. The 
cross markers in figures 3a and 3b correspond to the weakest 
filter that we could apply such that every scan-line in the SEM 
image (see for example figure 1) produces the correct number 
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Figure 8. Random generated top-down SEM-like image with line edges. The field size is 2 µm in length 
(256 pixels) and 450 nm wide (1024 pixels). The pixel size is about 7 nm x 0.5 nm.
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of edges (12). In other words, if we decrease the strength of 
the filter even further, then we no longer detect 12 edges per 
scan-line. In figure 3a we observe that, besides suppression 
of the high frequencies (which is required to reduce the image 
noise), the lower and center frequencies are affected as well. 
The conclusion from figure 3a is that the power spectrum of 
the filter leaks into the PSD. As a consequence, LER becomes 
a function of the applied filter, which is best seen in figure 3b. 
We ask the following question: How much further do we need 
to reduce the filter strength, such that the measured LER no 
longer depends on the filter? We failed in reducing the strength 
of the filter because then the edges cannot be detected accu-
rately anymore by conventional peak detection. The side effect 
of image processing, in particular smoothing, is also discussed 
by[4, 11]. Now that we see the influence of a filter on the PSD, we 
conclude that the best solution would be to avoid a filter at all.

We recently developed a method to detect edge displace-
ments without the use of a filter. This method works as follows. 
We approximate the signal profile of the SEM by integrating the 
image in the direction of the edges. For example, the approxi-
mate signal profile of figure 1 is given by figure 4. We emphasize 
that this is only an approximation, because by integrating in 
the direction of the edges, the actual shape of this profile be-
comes a function of the roughness of the edges. We expect 
that if the roughness increases, then the signal profile widens. 
In principle, the roughness of the edges must be corrected for 
by displacing the rows. However, for the moment we assume 
that this roughness dependency can be neglected. The signal 
profile of a single edge is shown in figure 5. We model this 
signal profile by matching two vertically shifted and normalized 
Gaussians at the center of the peak, which has the following 
mathematical representation,

Where bL and bR defines the base level, sL and sR define the 
standard deviation to the left and right of the center µ.

The left base level is defined such that limx——> +[x] P(x) = bL and 
the right base is defined such that limx——> +[x] P(x) = bR. Note that 
if bL = bR = 0 (the Gaussians are not shifted upwards), and sL 
= sR (same spread), then equation 6 reduces to the standard 
definition of a Gaussian distribution (neglecting the normaliza-
tion factor). The parameters bL, bR, sL and sR are fitted against 
the approximated signal profile. The dashed line in figure 5 is 
the best fit of this model against a single isolated experimental 
profile obtained by integrating image 1 in the direction of the 
edge. The idea is now to fit this model to every sampled row 
of a single edge using parameter optimization. We introduce 
the following degrees of freedom to the model of the fitted 
signal profile,

Where s scales the profile vertically and Dx is the horizontal 
displacement of the profile. The parameters s and Dx are de-
termined by using an interior trust-region-reflective minimiza-
tion algorithm. The interested reader is referred to the article 
of Coleman for details on the minimization procedure[12]. In 
figure 6 we demonstrate one of the minimization results using 
the original (unfiltered) signal. Clearly for such noisy data, an 
edge detection method could not have found the position of 
the edge.

Now that we can detect the edge displacements without 
using a filter, we re-analyze the recorded images of J. Jussot 
(figure 1). The PSD without using a filter (cross markers) is 
given by figure 7a together with the weak filter version (square 

Figure 9. Illustration of filter-free displacement detection applied to 
a random generated top-down SEM-like image with lines. The field 
size is 2 µm in length (256 pixels) and 450 nm wide (1024 pixels). The 
average electron density of this image is about 2 electrons per pixel and 
corresponds to an average charge density of about 10 µC/cm2.

Figure 10.  Illustrative comparison 
between the random generated 
displacements (solid line) and the 
detected displacements (dashed line) 
after adding Poisson-distributed noise. 
The difference between the input and 
detected displacements gives us the 
noise distribution in edge detection 
caused by adding pixel noise.
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markers) of figure 3a. In figure 7a we can see that the pixel 
noise really starts to contribute after the marker ’noise limit’. 
In figure 7b we see that the cumulative sum after the marker 
accounts for approximately 1.6nm - 1.4nm = 0.2nm. Therefore, 
a rough estimation for the actual LER is 1.4nm. This is to be 
compared to the estimate of 1.3nm for the weak filter version 
(square markers) in figure 7b. Apparently, the weakest filter 
that we have applied before is not that far off.

3. Image Noise Analysis
In estimating LER (figure 7a) we used all available images 
(+50) to reduce the uncertainty in the discrete PSD. We now 
improved this LER determination by considering a model for 
the PSD and question how much noise is acceptable, such 
that we still can determine LER? In fact there are two ques-
tions: (1) How much noise can we allow in a single image and 
(2) how many lines/images do we need in total? We begin our 
investigation on the effect of image noise on the determination 
of LER by generating rough edges at random using the model 
of Palasantzas[13] with known parameters,

This PSD defines a perfect infinitely long line with s as the 
LER, e the correlation length and a the roughness exponent. 
It can be verified that this PSD satisfies the following identity,

The random displacements can be generated via the algo-
rithm of Thorsos, which is explained in[14]. The algorithm of 
Thorsos produces random edge displacements that, in the limit 
of large averages, converges towards the PSD of Palasantzas 
up to a bias in the standard deviation. This bias is explained 
in[14] as well and can be compensated for by multiplying the 
edge displacements with a constant factor.

We generate top-down SEM-like images by using the fitted 
signal profile obtained earlier (figure 5). A SEM-like image is 
obtained by shifting the signal profile at every row according to 

the random generated displacements satisfying equation 8. If 
we put a number of random generated lines next to each other 
in one image, we obtain the result of figure 8a. This is a simu-
lated result of a noise-free top-down SEM-like image of random 
generated line edges. The image is further processed by add-
ing Poisson-distributed noise to every pixel of the noise-free 
image, after choosing an average electron density. Examples 
of Poisson noise generated images are given by figures 8b, 8c 
and 8d. In each of the images, the average electron density is 
set to (in respective order): 200, 20 and 2 electrons per pixel. 
The corresponding average charge density is (in respective 
order): 1000 µC/cm2, 100 µC/cm2 and 10 µC/cm2. The edges of 
the random generated images are determined using filter-free 
displacement detection as described before. An example of 
displacement detection applied to a random generated im-

Figure 11. Simulated PSD obtained from averaging over many images for 
different noise settings.

Figure 12. Simulation results for fitting the PSD model of Palasantzas 
to random generated lines after adding Poisson-distributed noise. The 
random lines are generated with a length of 2 µm (256 pixels) using the 
fitted signal profile of figure 5. The correlation length e is set to 25 nm and 
the roughness exponent a equals 0.75. The simulated (electron density) ~ 
2 per pixel (charge density ≈ 10 µC/cm2).
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age is given by figure 9. The difference between the random 
generated displacements and the detected displacements 
after adding Poisson-distributed noise tells us how pixel noise 
translates to noise in edge displacements. This is illustrated 
in figure 10, where the black line corresponds to the random 
generated displacements and the dashed line corresponds to 
the detected displacements after adding Poisson-distributed 
noise. We conclude from running many simulations that this 
pixel noise translates to a noise in the edge displacements 
which is uniform (flat line) in the PSD. This means that pixel 
noise is classified as white noise in the edge displacements. 
Now that we classified the noise, we are free to add this noise 
term to the Palasantzas model (see also[7, 9]),

Where sn is the noise level and Dy the measurement interval. 
The PSDs obtained by detecting the edge displacements in 
simulated images with an electron density of 2, 20 and 200 
electrons per pixel are given by figure 11. In these images we 
can see that pixel noise translates to white noise: The PSD in 
the high frequencies flattens out to a straight line as we increase 
the noise level by decreasing the electron density per pixel.

The idea is now to fit the simulated discrete PSD as a function 
of the number of averages and analyze the convergence of the 
parameters (s, sn, e and a) of the Palasantzas model extended 
with a noise term, see equation 10. We remark that by fitting 
equation 10, we neglect the systematic errors described by[9]. 
We neglect the systematic errors because we have a larger N 
and the power of the noise level renders the perturbation due 
to aliasing or spectral leakage negligible. Our simulation is set 
up as follows: We generate random lines with a length of 2 µm 
(256 pixels) using the fitted signal profile of figure 5. The cor-
relation length e in the Palasantzas model is set to 25 nm and 

the roughness exponent a equals 0.75. These are typical values 
for experimentally measured edges[7, 9]. Now we consider the 
worst case in image noise of the densities given by figure 8, 
which corresponds to an electron density of about 2 electrons 
per pixel on average (charge density ≈ 10 µC/cm2). We run many 
simulations and determine distributions of the outcome values 
of the parameters of the Palasantzas model (LER s, noise level 
sn, correlation length e and roughness exponent a). The result of 
this low dose high-noise simulation is given by figure 12. At first 
we observe that all estimated parameters of the Palasantzas 
model are likely to converge towards the input parameters. 
However, the convergence seems to be asymptotic, which is 
best seen in the noise term sn (figure 12b) and correlation length 
e (figure 12c). The errorbars roughly decrease as the square root 
of the number of averages, which is to be expected based on 
averaging principles. The relative errors (size of the errorbars 
divided by the input value of the parameter) are given in figure 
13. We conclude from figure 13 that the correlation length e 
and roughness exponent a are harder to estimate, i.e. it takes 
more averages to produce the same relative error as for LER s 
and noise level sn. The most interesting parameter for industry 
is LER s, because that is the parameter against which process 
performance is evaluated. When the number of averages is low, 
the intrinsic noise in the discrete PSD is significant, as can be 
seen in figure 14. It is remarkable that under these conditions 
LER can still be estimated with a relative error of about 10%. 
In other words, it only takes one single image (figure 8d) with 
2 electrons per pixel (charge density ≈ 10 µC/cm2) to estimate 
LER as 1.5 nm ± 10%.

We now question how the parameters converge when we 
change to a different electron density per pixel. The influence 
of electron density on LER s is given by figure 15, where we 
plot the relative error as a function of the number of averages 
for different electron densities. This result (figure 15) shows 
that it hardly makes any difference going from a density of 
20 electrons per pixel (charge density ≈ 100 µC/cm2) to 200 
electrons per pixel (charger density ≈ 1000 µC/cm2). The ex-

Figure 13. Relative error in parameter estimation in the simulation of figure 
12. This result corresponds to an average density of 2 electrons per pixel.

Figure 14. Illustration of the intrinsic noise in the discrete PSD after 
averaging 10 times. The dashed line corresponds to the limit of many 
averages. The data is obtained from a simulation corresponding to a density 
of about 2 electrons per pixel (charge density ≈ 10 µC/cm2).
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nanotechnology program of the Dutch Government and 130 
partners.
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planation is as follows. We identify that the relative error has 
two contributions: (1) image noise and (2) variation because of 
limited edge length. This can also be seen by integrating the 
Palasantzas model given by equation 10,

The relative error is then determined as,

In the simulation with an average density of 2 electrons per 
pixel, both terms in equation 12 contribute to the total error. 
The error in the noise contribution (second term in equation 
12) decreases as we increase the electron density per pixel. In 
that case, the total relative error is primarily determined by the 
variation caused by limited edge length (first term in equation 
12). In figure 15 we see that this already occurs at an averaged 
density of 20 electrons per pixel.

4. Conclusion
The off-line determination of LER in top-down SEM image 
requires low-noise images. This means that we need many 
electrons (higher dose) or we filter the image before edge de-
tection. By increasing the dose we run the risk of shrinkage. 
The problem with a filter is that characteristics of the filter 
leak into the PSD. This complicates the determination of LER.

We tried a different method by fitting the profile signal of 
the SEM against the unfiltered images. The profile signal is 
obtained by integrating an experimental top-down SEM im-
ages of lines. With this method it is possible to detect the 
edge displacements in very noisy images without using a filter.

In a simulation study we discovered that LER can still be 
estimated from very noisy images with only about 2 electrons 
per pixel on average (charge density ≈ 10 µC/cm2). The PSDs 
of figure 11 are averaged over many lines. However, even a 
single image as figure 9, produces an estimation for LER with a 
relative error of only 10%. With the right analysis it is possible 
to get LER with reasonable accuracy at amazingly low dose.

This work is supported by NanoNextNL, a micro and 

Figure 15. Relative error in LER s estimation when simulating different 
electron densities.
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■	 eBeam Initiative Announces Key Educational Themes for 
Photomask and Lithography Community for 2014

PRNewswire
The eBeam Initiative, a forum dedicated to the education and promotion of new 
semiconductor manufacturing approaches based on electron beam (eBeam) 
technologies, today announced the top educational themes that it will highlight in 
2014. These themes, which were identified based on member company feedback 
to the Initiative’s most recent annual survey completed late last year, include: the 
growing risks associated with mask hotspots; new developments in multibeam 
solutions for both maskless and mask-based lithography; and new developments in 
general purpose graphics processing unit (GPGPU) solutions for simulation-intensive 
electronic design automation (EDA) applications. Mask hotspots, which are wafer-
level production issues that occur when the shapes specified by optical proximity 
correction (OPC) are not faithfully reproduced on the mask, are of particular concern 
as the semiconductor industry migrates from the 28-nm node to the 20-nm node 
and beyond. As part of its educational efforts, the eBeam Initiative commissioned a 
white paper on the causes of mask hotspots, how they are different from lithography 
(wafer) hotspots, and solutions to address mask hotspots before they impact mask 
yields and cycle times, as well as wafer yields. 
	 “eBeam technology provides a crucial link in every semiconductor design to 
manufacturing chain, regardless of which advanced lithography approach is 
being considered. After more than five years, the eBeam Initiative continues to 
serve a vital role in providing a forum for the mask and lithography community to 
explore new challenges that can be solved by eBeam based solutions,” stated  
Aki Fujimura, CEO of D2S, the managing company sponsor of the eBeam Initiative. 
“Many of our members have indicated that mask hotspots are now an increasingly 
important issue that the industry must come together to address, making this a natural 
theme for the eBeam Initiative this year. Better mask making leads to better wafer 
making. By working together to solve the mask hotspot issue, we can enable more 
complex shapes to be reliably manufactured on the mask, which then addresses 
the lithography hotspot problem through better masks.”

■	 Significant Progress Achieved in AIMS™ EUV Project

Business Wire
The AIMS™ EUV platform represents an essential tool for the development and 
manufacturing of defect-free EUVL masks supporting the 16 nm half-pitch (HP) 
technology node requirements with extendibility to the 11 nm HP node. Consequently 
the development of this tool is part of the EUVL Mask Infrastructure (EMI) Consortium 
activities. SEMATECH launched EMI in 2010 to address key infrastructure gaps for 
EUV in the area of mask metrology, by funding development of critical metrology 
tools. “The AIMS™ EUV tool will be one of the most precise optical instruments 
fabricated for the semiconductor industry, and the EMI members are pleased to 
see our collaboration facilitate this technical accomplishment. With first images now 
available ZEISS is showing significant progress in building a production ready tool. 
Mask defectivity remains a key challenge to EUV readiness and it is exciting to see 
AIMS™ continue its journey towards realization,” comments Michael Goldstein, EMI 
Program Manager & Sr. Principal Physicist, Intel assignee at SEMATECH. 
	 The resolution of the system is already excellent and achieves the specification 
of the AIMS™ EUV system. The first images were taken on 64nm mask structures, 
corresponding to 16nm half-pitch at wafer level. In the course of the year the first 
customer masks will be measured on the system. 
	 In parallel the preparations for the complementary AIMS™ EUV infrastructure 
is ongoing. Beginning in 2013 the first AIMS™ EUV Field Service Engineers were 
trained for installing and servicing the systems in the field. 
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