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ABSTRACT
Prediction intervals which describe the reliability of the predictive performance of machine learning models 
are important to guide decision making and to improve trust in deep learning and other forms of machine 
learning and artificial intelligence. Conformal prediction is a relatively recent, increasingly popular, rigor-
ously proven and simple methodology to address this need for both classification and regression problems, 
and it does not use distributional assumptions like Gaussianity or the Bayesian framework; one new variant 
combines it with another technique to generate prediction intervals known as quantile regression. We will 
illustrate the strengths and limitations of different conformal prediction procedures for a regression problem 
involving line edge roughness (LER) estimation; LER affects semiconductor device performance and the 
yield of the manufacturing process. Low-dose images from the scanning electron microscope (SEM) are 
often used for roughness measurements because of relatively small acquisition times and resist shrinkage, 
but such images are corrupted by noise, blur, edge effects and other instrument errors. We consider predic-
tion intervals for the deep convolutional neural network EDGENet, which was trained on a large dataset of 
simulated SEM images and directly estimates the edge positions from a SEM rough line image containing 
an unknown level of Poisson noise.

1. Introduction
The future of semiconductor device fabrication will increasingly depend on data processing, information 
extraction, and knowledge management.1-3 Deep learning4 and other forms of artificial intelligence are pre-
dicted to have an increasingly important role in semiconductor metrology and other aspects of manufacturing 
system performance.2, 5 However, despite the growing interest in smart manufacturing there are barriers at 
this time to a complete realization of this vision. In December 2020 the National Science Foundation and the 
National Institute of Standards and Technology brought together many leaders throughout the manufactur-
ing sector including the Senior Director of Industrial Innovation at Intel to discuss the acceleration of the 
implementation of artificial intelligence in manufacturing. The ensuing report describes real and perceived 
risks and a lack of transparency as two of the obstacles to the adoption of artificial intelligence.6 Furthermore, 
Sections 5.8.4 and 5.8.6 of the 2020 International Roadmap for Devices and Systems (IRDS) report on Fac-
tory Integration discuss prediction engines and the need for them to incorporate indications of the quality of 
predictions.2 One way to address both sets of concerns is by quantifying the uncertainty of the predictions 
obtained through machine learning models by means of prediction intervals which describe the reliability 
of predictive performance. Machine learning models can address two broad classes of problems, namely, 
regression problems or classification problems. In the case of a regression model estimating a single number 
a prediction interval specifies a range of values in which the output variable lies with high probability; while 
our focus in this paper is on regression, prediction intervals can also be defined for classification problems.7

There is a large literature on the design of prediction intervals. The most useful approaches for a particular 
application must satisfy certain criteria. First, they should be founded on assumptions which are well-suited to 
the application in order to offer valid coverage. Second, they should generate the shortest possible intervals 
to best guide decision making. Finally, they should have an acceptable computational complexity [2, p. 42].

Conformal prediction7-13 is a comparatively recent and straightforward methodology with a mathematical 
foundation for constructing prediction intervals for machine learning models which has been attracting in-
creasing attention. The underlying assumption of conformal prediction is a concept known as exchangeability, 
which roughly means that the past is representative of the future and the ordering of examples does not 
matter. This condition holds when all examples being considered are either sampled independently from the 11
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Editorial  
Leveraging the renaissance 
Patrick Naulleau, Center for X-ray Optics, Lawrence Berkeley 
National Laboratory
After a couple decades of the apparent commoditization of chip 
manufacturing, we appear to have entered a renaissance where the broader 
community is again recognizing the critical nature of advanced semiconductor 
manufacturing and the paramount value of technical leadership driven by 
fundamental science. This transition is evidenced by the various government 
initiatives around the globe including the CHIPS Act in the U.S. Although 
many of these initiatives were kicked off before the pandemic, the past two 
years have further driven home the critical importance of chip manufacturing 
by clearly bringing to light our society’s ubiquitous dependence on 
semiconductors.

A key opportunity I see from this renewed public interest in advanced chip 
manufacturing is in building out the workforce of the future. Future innovation 
in this space depends on society allocating the brightest minds to this 
problem, and that starts with our students. Yet all of us serving on conference 
committees in this field are intimately aware of the challenges we face in 
finding graduate students dedicating their formative years to the field. We 
as a community should take this renaissance of awareness in semiconductor 
manufacturing as an opportunity to build out a robust academic network that 
will stand the test of time, educating and training our future workforce.

Hopefully, government funded research programs enabled by the new 
initiatives will have a significant impact on the academic network, but we 
cannot rely on the government alone for this role. Industry should also be 
instrumental in driving high-risk academic research, recognizing that the 
primary value of such engagements may not in fact be immediate deliverables, 
but rather in the fostering of a vibrant innovative ecosystem that will draw the 
best and the brightest to the field. Moreover, these responsibilities should not 
be confined to just those companies directly operating in the semiconductor 
manufacturing, materials, and tooling space, but they should also be shared by 
industry further up the value chain which is critically dependent on continued 
innovation in advanced chip manufacturing.

The ecosystem we strive to strengthen must include both students as well 
as young professors interested in building academic careers in this space. 
After all, at the root of addressing the lack of students is ensuring that we 
have a healthy supply of professors and academic programs to attract those 
students. Our industry should take this golden opportunity to re-invigorate 
the academic ecosystem in semiconductor manufacturing. In practice, what 
this means is being willing to fund open, exploratory, and long-term research. 
It also means outreach, engagement, and mentorship; academics strongly 
value collaboration and are drawn to challenging high-impact problems. 
Such problems for sure abound in this field, but we need to do a better job of 
making the academic community aware of that and leveraging their expertise. 

This is clearly an exciting time to be in the field, so let’s spread the word!
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same fixed but unknown probability distribution or satisfy some weaker 
conditions; see, e.g., [8, §3] for a detailed discussion of exchangeability. 
The circumstances to which conformal prediction can be applied are fairly 
general as it does not use distributional assumptions like Gaussianity or 
the Bayesian framework. We focus here on the split or inductive version 
of conformal prediction, which begins by fitting a regression model to 
training data and subsequently applies a devised “nonconformity score” 
on the strangeness of examples in a separate calibration set to specify 
reliable confidence levels in future test examples; the original transductive 
conformal prediction is a slower approach to finding prediction intervals. 
The effectiveness of conformal prediction is contingent on the underlying 
probability distribution and the nonconformity score, and there is often a 
trade-off between the width of prediction intervals and the computational 
cost of producing them. Another new development in this approach to 
uncertainty quantification shows that it is sometimes possible to combine 
the coverage guarantees of conformal prediction with an earlier and 
widely used methodology to constructing prediction intervals known 
as quantile regression14-17 to obtain more efficient prediction regions.

We will illustrate the strengths and limitations of different conformal 
prediction procedures for a regression problem involving line edge rough-
ness (LER) estimation. The measurement of LER is necessary to under-
stand and control semiconductor device performance and the yield of the 
manufacturing process (see, e.g., [18, pp. 82-92]). The critical-dimension 
scanning electron microscope (CD-SEM) is a standard tool for roughness 
measurements. It is ideal to work with low-dose SEM images because they 
reduce sample damage and acquisition time (see, e.g., Ref. 19). However, 
to determine edge geometry from such images requires techniques to 
account for their noise, blur, edge effects and other instrument errors, 
and there is a large literature on this subject with multiple approaches to 
the problem. Our goal in this paper is to investigate prediction intervals 
for a simple LER estimation strategy using a simulated dataset so that 
we know the ground truth. In References 20 and 21 our group proposed 
a deep convolutional neural network named EDGENet which inputs a 64 
x 1024 SEM image containing one rough line which is corrupted by an 
unknown level of Poisson noise and directly outputs a matrix of dimension 
2 x 1024 with the estimated left and right edge positions of the line; we 
will focus here on EDGENet and the simulated dataset used to study it.

In Section 2, we provide an overview of five methods to construct 
prediction intervals from simulated images. Our difficulties with a sim-
plistic approach to applying quantile regression to the relatively large raw 
data in an image motivate a study of that methodology in an idealized 
situation where we reduce the input to a few key parameters about the 
image. In Section 3, we review the architecture of EDGENet and details 
about our dataset. In Section 4, we offer more information about the 
neural networks we design as tools in constructing prediction intervals 
as well as the results on coverage and efficiency; we will see that domain 
knowledge is important in exploiting the benefits of neural networks. In 
Section 5, we conclude the paper.

2. On Conformal Prediction and Conformalized Quantile
Regression

Supervised machine learning is a branch of artificial intelligence which 
fits parametric functions to collections of input/output data pairs zi = 
(xi; yi ). For the type of regression problems we consider, suppose xi is 
the input vector of dimension d of instance zi and yi is output scalar of 
zi. Machine learning algorithms try to estimate the relationship between 
the input and output based on an underlying model in the form of a 
parametric function, some loss criterion, and some approach to exactly 
or approximately solve the corresponding optimization problem. In many 
cases, once the model is fit the machine learning algorithm will offer a 
point prediction of the output for a new input example. The objective 
of predictive inference is to construct well-calibrated prediction bands 
with finite-sample coverage only assuming that the training instances z1; 
z2; : : : ; zn are exchangeable. In particular, if a € (0, 1) is a prespecified 
miscoverage rate, then based on our training examples for a new test 

input Xn+1 we wish to find a marginal prediction interval C(Xn+1) satisfying

                                                (1)

The term “marginal” means that the probability is over all random in-
stances Z1; Z2; : : : ; Zn+1, so this type of coverage occurs on average. Since 
there are no promises conditional on a specific observation Xn+1 = xn+1, 
the constructed confidence intervals may offer conditional over-coverage 
for certain observations and conditional under-coverage on others.12,17 
Nevertheless, the framework is popular because it only assumes the 
exchangeability of data and because it offers a diagnostic tool for and a 
comparison tool among regression models.12,17

Our focus here is on split or inductive conformal predictive strategies. 
In this scenario, we separate the input/output data pairs into three disjoint 
categories. The first category is the proper training set ZT , which is used 
to train a machine learning model. Suppose the regression model fit to 
ZT is g. The second category ZC is a calibration set, which is processed to 
provide a list of nonconformity scores for a predetermined nonconfor-
mity measure which depends on g; we will mention two approaches for 
selecting that measure for conformal prediction. The list of nonconfor-
mity scores together with g determines prediction intervals for future 
examples. The third category ZT offers test examples which are used to 
evaluate the predictive model.

The simplest nonconformity score η for an instance zi = (xi; yi) and a 
regression model g is the absolute value of the prediction error:
 

                                                                     (2)

Let k be the number of examples in the calibration set. Apply the 
nonconformity measure to each example in the calibration set and sort 
the resulting scores in nonincreasing order as r1; r2; : : : ; rk. Given a mis-
coverage rate a let m = ⎣a (k + 1)⎦ be the index of the (1 – a )-percentile 
nonconformity score. Then for a future input image Xj = xj the prediction 
interval

                                                          (3)

offers valid marginal coverage. The strength of this scheme is its sim-
plicity. However, for the LER estimation problem we will consider with 
images corrupted by several possible levels of Poisson noise we would 
find it more informative if the prediction interval width varies according 
to the difficulty of edge detection for each input image. Problems like 
this motivate “normalized” nonconformity scores.

Normalized nonconformity scores generalize the previous approach 
by incorporating a model to adapt to features of individual inputs. To 
augment the earlier basic method, apply η to every example in the proper 
training set and fit a model γ using the input-output pairs (xi;  η(zi)) for 
all zi € ZT. Let β be an additional sensitivity parameter. Then the corre-
sponding normalized nonconformity score  ηN is11

                                                           (4)

Apply the nonconformity measure to each example in the calibration 
set and sort the resulting scores in nonincreasing order as 

б
1; 
б

2; : : : ;    б
k. Then for a future input image Xj = xj the prediction interval

          (5)

offers valid marginal coverage. The advantage of the additional flexibility 
is in the potential for more informative prediction intervals, and the price 
for that benefit is the need for more modeling and computation.

In this paper we consider a neural network-based model on input-
output pairs (xi; η(zi)) which is inspired by [9, Equation (16)]. EDGENet 
is effective at predicting LER for the dataset of interest, but it performs 
better with lower noise levels. Therefore, it is reasonable to study the 
relationship between xi and  – ln |yi – g(xi)|: For our problem xi is an image 
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of dimension 64 x 1024 and less complex models are typically faster, so 
our approach to considering the relationship has two parts. We use an 
autoencoder22 to reduce the dimensionality of the input image xi to a fea-
ture vector ƒ(xi) with 64 elements from which it is possible to recover an 
approximation to xi. We next fit a second neural network model φ between 
ƒ(xi) and – ln |yi – g(xi)|. Our normalized nonconformity score ηN is then

                                                               (6)

and the corresponding prediction interval for a future input Xj = xj is

        (7)

We will provide more details about the neural network architectures 
from which we obtain ƒ and φ in Section 4. Observe that if it were pos-
sible to do this prediction perfectly, then all nonconformity scores would 
be one, and yj would be an endpoint of a predicted interval for input xj. 
Therefore, this approach should be an indicator of the difficulty of making 
the initial prediction g(xj) from input xj.

A normalized conformal prediction interval for input xj is forced to 
be centered at g(xj), and this may artificially limit the efficiency of that 
interval. Could it be more effective to directly estimate upper and lower 
bounds of prediction intervals while maintaining the marginal cover-
age guarantees of conformal prediction? For some machine learning 
problems this strategy works.15-17 Here the upper and lower bounds are 
based on quantile regression,14 which is a widely used methodology for 
nonparametric probabilistic forecasting initially introduced to predict 
conditional quantiles; quantile regression subsequently became a tool 
to study the relationships among response and predictor variables that 
were not captured by other regression techniques.23 While popular, 
quantile regression does not generally promise validity.15 Our experience 
is that this approach to devising prediction intervals is not as immediately 
amenable to successful implementation as conformal prediction, but it 
is never-the-less promising. We will begin by discussing conformalized 
quantile regression (CQR)15 and a variation of it called CQR-r.17

In these methods, the proper training set is used to train an upper 
and a lower conditional quantile function. To elaborate, the conditional 
cumulative distribution function of random variable Y given random 
vector X is P[Y≤ y | X = x]. Inverting this function leads to conditional 
quantile functions. For ε € [0, 1],

                           (8)

Then for a miscoverage rate a and parameter δ € (0, a) we have

                 (9)

We will consider δ = 0.5a . For any ε € (0, 1), the standard14,15 loss func-
tion used to estimate q

ε
(x) from training data is the pinball loss function:

                  (10)

In general, a quantile regression method is based on some parametric 
linear or nonlinear family of functions ϕ(·) that can be realized; if N is 
the number of proper training images, xi is training image i, and yi is the 
ground truth LER corresponding to xi, then we ideally wish to minimize 
over all ϕ

                                                                    (11)

We focus here on neural network models. One typically trains neural 
networks by applying a form of gradient descent to perform the opti-
mization. Observe that ρ

ε
(y; ŷ) is not differentiable along the line y = ŷ, 

and this potentially hinders the training process.24 Therefore, we also 
consider the following smooth approximation of the pinball loss25 which 
incorporates a positive smoothing parameter a:

           (12)

We estimate q
ε
(·) by a function which offers an exact or approximate 

minimum to (11) using the original pinball loss or a smooth version. We 
let q̂

ε
(·) denote the estimated conditional quantile function.

In the next section we will discuss EDGENet. We created EDGENet with 
the belief that an automated, accurate and direct estimate of edge posi-
tions is an effective strategy to obtain a good point prediction of LER from 
an input image. Our first approach to investigating quantile regression 
is based on the assumption that an accurate estimate of edge positions 
should also be useful for good predictions of LER quantiles conditional 
on an input image. One objective of conformalized quantile regression 
is to easily modify deep neural networks to produce valid prediction 
intervals.16 It would be computationally expensive to train a deep convo-
lutional neural network from scratch to estimate an LER quantile, so we 
opt for a transfer learning26 strategy. In particular we modify EDGENet 
to obtain our initial estimates of quantiles from the proper training set. 
We will describe our approach in Section 4.

Since quantile regression does not generally guarantee coverage, the 
initial lower and upper bounds, q̂0.5a

(x) and q̂1–0.5a
(x) need adjustment. 

CQR and CQR-r use different modi cations. CQR employs the following 
nonconformity score ηQ:
 

      (13)

Apply this nonconformity measure to each example in the calibration 
set and sort the resulting scores in nonincreasing order as ε1, ε2, ..., εk. 
Then for a future input image Xj = xj the prediction interval

                             (14)

offers valid marginal coverage.
Ref. 16 proposes a variation of CQR which requires an estimate of the 

regression median in addition to the upper and lower quantiles; since this 
is more complex we do not consider this approach in this paper. CQR- r17 
is a variant of the scheme in Ref. 16 that does not need an estimate of the 
regression median. Here the nonconformity score  ηQ–r is

 (15)

Apply this nonconformity measure to each instance in ZC and sort the 
resulting scores in nonincreasing order as ~ε1, ~ε2, ..., ~εk. Then for a future 
input image Xj = xj the prediction interval

 
(16)

provides valid marginal coverage. The conformalized quantile regres-
sion schemes are the most challenging ones to implement and learning 
quantiles from raw image data appears to require more computational 
resources than we used with our transfer learning scheme. However, we 
believe that quantile regression has the potential to be a useful tool when 
combined with domain knowledge. Therefore, we examine an idealized 
scenario where instead of using raw images we describe them by a few 
key features. In particular, instead of training on simulated images we 
train on the parameters we describe in Section 4 that we use to generate 
those images together with the LER estimate produced by EDGENet.

3. On Edgenet and the Simulated Dataset
We initially designed the deep convolutional neural network EDGENet 
to directly estimate left and right line edge positions from a 64 x 1024 
noisy SEM image with pixel size 0:5 x 2 nm and containing one rough 
line and an unknown level of Poisson noise as illustrated in Figure 1; the 
original EDGENet outputs a matrix of dimensions 2 x 1024 specifying the 
predicted line edge positions, which are reported with pixel-level precision 
and not with subpixel-level precision. EDGENet uses seventeen convo-
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lutional layers28 with filter dimension 3 x 3 x input depth. The initial four 
convolutional layers each use 64 filters, convolutional layers five through 
eight each use 128 filters, convolutional layers nine through twelve each 
use 256 filters and convolutional layers thirteen through sixteen each 
use 512 filters. Each convolutional layer of EDGENet except for the last 
layer is followed by a batch normalization layer29 and a dropout layer30 
with dropout probability of 0.2 for regularization. The final convolutional 
layer uses a single filter to output the 2 x 1024 matrix of estimated edge 
positions. Figure 2 depicts the sizes of the output volumes or tensors cor-
responding to each convolutional layer. We use the mean absolute error 
(MAE) loss criteria to train EDGENet; i.e., if N is the number of training 
images, xi is training image i, ϕ(·) is a parametric nonlinear function that 
can be realized by EDGENet and ζi is the matrix of ground truth edge 
positions corresponding to xi, then we ideally wish to minimize over all ϕ

                                                 (17)

In order to facilitate the training process for our quantile regressors, we 
modified EDGENet by adding an extra layer to compute the LER values 
associated with the left and right edges.

The training of deep convolutional neural networks requires large da-
tasets, and our dataset consists of simulated SEM images. The first step 
in the generation of the dataset is to apply the Thorsos method31,32 with 
normally distributed random variables to simulate rough line edges or 
linescans. Each linescan follows a Palasantzas spectral model,33 which is 
described by three parameters: s is the line edge roughness (LER), i.e., 
the standard deviation of edge positions, a represents the roughness (or 
Hurst) exponent and ξ denotes the correlation length:

                  (18)

Every simulated edge is 2.048 microns or, equivalently, 1024 pixels long. 
Our edges can take on eight possible LER values (s = 0.4, 0.6, 0.8, 1.0, 
1.2, 1.4, 1.6, 1.8 nm), nine possible Hurst/roughness exponent values (a = 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and 35 possible correlation length 
values (ξ = 6, 7, ..., 40 nm). This results in 2520 possible combinations of 
parameters (s, a, ξ), and for each one we generated eight edges.

By applying the SEM simulator ARTIMAGEN34,35 with the parameter 
settings suggested by examples within the ARTIMAGEN library to a 
line of width 10 nm or 15 nm having two of the previously constructed 
rough edges we generate an image of dimension 64 x 1024 pixels with 
pixel width 0.5 nm and pixel height 2 nm which incorporates random 
backgrounds, a fixed edge effect, fine structure and Gaussian blur; we 
created 10080 such images. The locations of the lines within the images 
vary. The ARTIMAGEN library does not provide fractional edge positions, 
so the edge positions are rounded. Because rounding operations are not 
differentiable they were removed in the implementation of the new final 
layer of EDGENet as well as in the actual LER computations.

These 10080 images form our original image set. The ARTIMAGEN 
library enables us to generate ten noisy images for each original image 
having Poisson noise with electron density per pixel in the range {2, 3, 
4, 5, 10, 20, 30, 50, 100, 200}. The resulting 100800 images form our 
noisy image dataset. From the noisy and original images we constructed 
a supervised learning dataset of pairs of matrices (xi; yi) for the training of 
the initial version of EDGENet, where the input xi is a noisy image and the 
output array yi has dimension 2 x 1024 with entries consisting of the edge 
positions in the corresponding original image. In the enlarged EDGENet 
that we consider here the output yi is now either the LER of the left edge 
of the original image or the LER of the right edge of the original image.

4. Auxiliary Neural Networks, Experiments, and Results

4.1 	 An Autoencoding Approach to Normalized Conformal 
Prediction

Autoencoders are neural networks that are typically trained to reconstruct 
their input22,36 and are used to learn salient latent representations without 
the need for training labels; they are a powerful and popular unsupervised 

learning tool. We designed our autoencoder network to compress the 
dimensions of the noisy image xi from 64 x 1024 to 1 x 64 in order to 
realize a robust approximation ƒ(xi) that encapsulates the “difficulty” of 
each noisy image for use in a second neural network that predicts – ln 
|yi – g(xi)|. Our architecture consists of twelve convolutional layers with 
filters of size 3 x 3 x input depth. Following the typical approach to 
constructing autoencoders, there is some symmetry in the design of 
pairs of layers. The first and eleventh layers each have 64 filters, the 
second and tenth layers each have 128 filters, the third and ninth layers 
each have 256 filters, the fourth and eighth layers each have 512 filters, 
the remaining intermediate layers each contain a single filter and aid in 
compression, and the final layer also contains a single filter. Each layer 
except for the three compression layers and the twelfth layer is followed 
by batch normalization and dropout layers with a dropout rate of 20% 
to curb over fitting. The fifth and sixth layers are each followed by 2 x 2 
max-pool layers to help provide the desired dimension reduction. The 
output of the seventh layer is a tensor of dimension 1 x 1 x 64 which is 
reshaped to a row vector with 64 elements. All subsequent convolutional 
layers are preceded by up-sampling layers of sizes 4 x 4, 2 x 4, 2 x 2 and 
1 x 2, respectively, to reproduce at the final layer a tensor of dimension 
1   x 64 x 1024 which is reshaped to an image of dimensions 64 x 1024 
from the compressed representation.

We use the mean square error (MSE) loss criteria to train the auto-
encoder; i.e., if N is the number of training images, xi is training image i, 
and  ψ(·) is a parametric nonlinear function that can be realized by the 
autoencoder, then we ideally wish to minimize over all ψ 

                                                       (19)

The second neural network architecture is a relatively shallow fully-
connected neural network with four layers. All layer utilize rectified linear 
units (ReLU) nonlinearities as their activation functions. The first layer 
contains 128 units and accepts inputs of size 1 x 64. The second and third 
layers each have 64 units and apply L2 regularization. The final layer has 
two units which predict – ln |yi – g(xi)| for both the left and right edges. 
We trained the network with mean square error loss using the Adam37 
optimizer with a learning rate of 0.001 for 24 epochs.

4.2 	Transfer Learning for Conformalized Quantile 
Regression

Our quantile regression network builds upon the pretrained EDGENet 
convolutional neural network. The original EDGENet architecture out-
puts an array of line edge positions. By simply adding a custom layer to 
compute standard deviations EDGENet is transformed into a network 
from which we can directly compute the left and right edge LER values. 
This is useful because it enables us to train the network end-to-end with 
input/output pairs of the form (xi, LER values), which is needed to per-
form quantile regression. We also utilize a form of transfer learning26 in 
which we freeze the weights on the initial layers of EDGENet so that the 
quantile regression network can fully exploit prior information learned 
through the edge prediction task. In particular, we freeze the weights 
from the first fifteen layers and retrain the remainder of the network 
using the pinball loss function. Given a desired miscoverage rate a we 
train two separate networks for the quantile functions q0.5a

 and q1–0.5a
. One 

of the known challenges in quantile regression is the issue of quantile 
crossing, where the upper quantile network output could be smaller 
than the lower quantile network output (see, e.g., Ref. 24). The smooth 
pinball loss function alleviates this problem.24 Another challenge is the 
quantile regression networks tend to undercover and their performance 
depends on network hyperparameters;38 this also motivates the use of 
separate networks to train upper and lower quantiles. We use pinball 
loss for training the lower quantiles and smooth pinball loss for training 
the upper quantiles.

4.3 	Quantile Regression Based on the Defining Parameters
Quantile regression14 is an important tool for nonparametric probabilistic 
forecasting and can be helpful in describing the relationships among 
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Figure 2. The 17 convolutional layers of EDGENet, which inputs a noisy SEM image of dimension 64 x 1024 and outputs a matrix of dimension 2 x 1024. Reprinted with 
permission from Ref. 21.

response and predictor variables.23 Therefore, domain knowledge can 
potentially assist in improving quantile regression. To test this idea, we 
considered an idealized situation for producing a quantile regression 
prediction interval for the left edge with 90% coverage. To avoid crossing 
quantiles and low coverage we utilize separate networks to train for upper 
and lower quantiles. Instead of using the 64   1024 raw image data, our 
input to our quantile regression networks is a vector with seven elements. 
Six of these are the parameters used to create the simulated image { 
the three parameters of the Palasantzas spectral model, the noise, the 
line width and the position. The last element is the left edge LER value 
predicted by EDGENet. Our quantile regression fully-connected neural 
networks each have six layers and apply rectified linear units (ReLU) 
nonlinearities as their activation functions. For both networks the first 
two layers each contain 32 units, the third layer has sixteen units, the 
fourth layer has eight units, the fifth layer has four units, and the final 
layer has a single unit that outputs the LER quantile prediction. We use 

the pinball loss function in both cases as well as a batch size of sixteen 
in training each network. We train each network for about 90 epochs.

4.4 	Experiments and Results
We next describe and compare the experimental results of five different 
approaches to constructing prediction intervals: conformal prediction, 
normalized conformal prediction, quantile regression, conformalized 
quantile regression (CQR), and a second conformalized quantile re-
gression scheme (CQR-r). For each of these schemes we perform four 
groups of experiments; namely, we study the outcomes of each scheme 
on the left and right edges at miscoverage rates of 0.1 and 0.05. One of 
the messages we would like to deliver is the importance of modeling. 
In addition to these five schemes we will discuss preliminary results for 
six other approaches for the left edge data at a miscoverage rate of 
0.1. Five of these approaches are “ensemble” schemes13 which use the 
previous models in a simple way to improve upon quantile regression. 
The last scheme is intended to demonstrate the benefits of incorporating 
domain knowledge.

We partition the simulated dataset of 100800 input/output pairs with 
all values normalized to the range (0,1) into a proper training set, a calibra-
tion set and a test set. The calibration and test sets together correspond 
to the 11520 input images with correlation length ξ in the set {10, 20, 

Figure 1. A noisy SEM image of dimension 64 x 1024. 
The image has one line with two edges. The aspect 
ratio of the image has been scaled to improve 
viewing. Reprinted with permission from Ref. 27.

30, 40} nm. The proper training set consisted of the remaining 89280 
input/output pairs, which matches the proper training set of EDGENet. 
The output depends on the network we train; for the autoencoder the 
network output is a noisy image. The calibration and test sets are the same 
size and were carefully constructed to as closely as possible approximate 
exchangeability; the 1152 original images with correlation length ξ in the 
set {10, 20, 30, 40} nm were randomly split into two subsets each of size 
576. All 5760 noisy images corresponding to one subset of original im-
ages are the inputs for the calibration set, and the remaining 5760 noisy 
images are inputs for the test set.

All models were trained using an Intel Xeon E5-2680 v4 processor 
running at 2.4GHz and a Tesla K80 GPU. Training hyper parameters such 
as the batch size, optimizers and the learning rate require optimization 
and fine tuning. Except for our quantile regression networks in the case 
where we apply domain knowledge we use a batch size of eight input-
output pairs to account for memory constraints. In all cases we employ 
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the Adam37 optimizer for stochastic gradient descent with a learning rate 
of 0.001 during training.

Tables 1 and 2 respectively summarize the performance of the main 
five approaches for the left and right edges when the miscoverage rate is 
0.1. Tables 3 and 4 likewise respectively describe the results of the main 
five approaches for the left and right edges when the miscoverage rate 
is 0.05. Notice that the prediction intervals for the right edge tend to be 
wider than those for the left edge. As Table 2 illustrates, the coverage for 
the right edge is uniformly below 90%; we feel that EDGENet has more 
difficulties processing right edge data than left edge data. Furthermore, 
the authors of Ref. 17 report the undercoverage of conformalized quantile 
regression schemes for some real datasets, and they recommend using 
10-30% of all training examples for the calibration set while we used 
about 6.06% of all training examples for the calibration set. The simple 
conformal prediction scheme achieves good coverage but cannot of-
fer information about the difficulty of the regression task for a specific 
instance. Our implementation of normalized conformal prediction has 
reasonable coverage. Its average prediction interval length is higher 
than that of simple conformal prediction, but it can produce significantly 
narrower intervals for less difficult instances. Our analysis reveals that 
normalized conformal prediction intervals are smaller than their simple 
conformal prediction counterparts 60% of the time for left edges and 
45% of the time for right edges further confirming the observation that 
EDGENet has more difficulty with the right edges. Our initial approach 
to quantile regression tends to grossly undercover and has a relatively 
large average interval length. There are two main factors contributing 
to this. First, quantile regression neural networks are known to have a 
tendency to undercover and their performance is sensitive to network 

hyperparameters.38 Second, our transfer learning scheme uses the pre-
trained weights of EDGENet and attempts to learn both left and right edge 
statistics with relatively few available parameters from raw image data. 
Nevertheless, despite these challenges CQR and CQR-r offer significant 
coverage improvements and show the potential of conformalization 
techniques in producing coverage guarantees.

While these five schemes offer the beginning of a study of prediction 
intervals, there are endless ways to improve on modeling. In Table 5 we 
consider five simple ensemble strategies. Each one of the first three 
produces a new quantile regression algorithm which is founded in part 
on our initial quantile regression scheme and which significantly outper-
forms it. Observe from Tables 1-4 that normalized conformal prediction 
produces both very narrow and very wide intervals while our conformal-
ized quantile regression algorithms avoid these extremes. Nevertheless, 
all three schemes offer good coverage. Therefore, it is desirable to take 
advantage of the best of both worlds, and this leads us to examine the 
following three schemes for the left edge data and 90% coverage. The 
Ensemble 1 scheme uses the shorter predicted interval between normal-
ized conformal prediction and CQR. The Ensemble 2 scheme uses the 
shorter predicted interval between normalized conformal prediction 
and CQR-r. The Ensemble 3 scheme uses the shortest predicted interval 
among all three algorithms. As Table 5 demonstrates, each scheme has 
a better coverage than our initial quantile regression scheme while offer-
ing a better expected length than simple conformal prediction. It is also 
possible to consider ensemble strategies involving conformal prediction. 
Observe that if two models offer miscoverage rates a1 and a2, then the 
miscoverage rate of their ensemble will be between max {a1, a2} and a1 
+ a2. For Ensemble 4 we use the shorter predicted interval between the 

Table 1. Coverage and interval length statistics for the LER of the left edge when the miscoverage rate a equals 0.1.

Table 2. Coverage and interval length statistics for the LER of the right edge when the miscoverage rate a equals 0.1.
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normalized conformal prediction scheme generated for  a1 = 0.1 and the 
conformal prediction scheme generated for a2 = 0.05. For Ensemble 5 
we use the shorter predicted interval between the normalized conformal 
prediction scheme generated for a1 = 0.05 and the conformal prediction 
scheme generated for a2 = 0.1. Table 5 shows that Ensembles 4 and 5 
improve both upon the coverage and the average interval length attained 
with Ensembles 1-3.
If there are benefits to combining machine learning models, then there 
are potentially greater benefits to combining machine learning models 
with domain knowledge. Here we will look at an instance where our 
domain knowledge is perfect and again focus on the left edge data with 
90% coverage. In this case we replace the raw image data with a vector 
with seven elements. Six of these are the parameters used to create 
the simulated image { the three parameters of the Palasantzas spectral 
model, the noise, the line width and the position. The last element is the 
left edge LER value predicted by EDGENet. These vectors are our inputs 
to two quantile regression networks, which are described in the previous 
subsection. We report our result in Table 1, and it is clearly superior to 
all of the previous approaches that we have discussed. Furthermore, we 
made no attempt to optimize the model and we did not conformalize 
this quantile regression algorithm.

5. Conclusion
The digital transformation of semiconductor manufacturing is underway. 
To maximize the rewards of this opportunity the semiconductor industry 
must have better tools to apply deep learning and other forms of artificial 
intelligence in decision making. Distribution-free prediction intervals with 
coverage guarantees are one approach to address this need, and this topic 
is an active area of research in the data sciences. The most successful 
techniques are likely to leverage advances in multiple domains.
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