Opportunities in Photonics Component Manufacturing in Europe

Dr John Lincoln
Dr Gregory Flinn
Photonics Europe 18 April 2012
Outline

Context and component market size
Definitions
Overall trendsin detail
External factors
Context

• Photonics is big - €300 billion now €480bn by 2015
• Europe is strong - 20% global market
• Photonics is becoming accepted – EU key enabling technology

Behind every photonics system/application is a photonics component

• Challenges
 – Higher volumes required earlier at lower cost
 – Time to market decreasing
 – Volatility of demand in location & volume

• Can Europe maintain and grow position in components?
 • Do these trends really matter?
The sum of many parts

• How big is European component industry?

- €9.3bn includes
 • laser diodes, LEDs, image sensors, optics, glasses etc manufactured in Europe.
 • Growing at 7% less than global photonics growth

Components are big business
Component or System?

- What is a system to one is a component to another
 - It depends where you are in the supply chain

“A discrete device ... whose characteristicscan be independently measured and is capable of being packaged with other devices”

- Include laser diodes, LEDs & CCDs but not solid state lasers & cameras

Anything can be a component
Where are the opportunities?

- Look at the process flow - raw material to finished component
 - Details for select components and processes in full report

Focus on the manufacturing opportunities
Overall trends

• Common themes/ windows of opportunity emerge

- Complexity
- Integration
- Wafer-scale processes
- Leadership and use of standards
- Leverage CMOS investment
- Leverage customer proximity
- Global suppliers investors markets
- Target high performance

Common trends in many components/ processes
Complexity

• Photonics is maturing, manufacturing getting more complex
 – Low hanging fruit have been picked
 – Opportunities are getting harder

• Examples:
 – Performance over lifetime & temperature
 – Volumes of 10,000’s not 100’s

 More investment,
 More technology
 More interdependency
 = More risk
Integration & Automation

• More functionality without adding complexity for the user
 – Improve delivered value without adding cost.
• Not just better performance, but broader performance
• Examples:
 – Photonics integrated circuits – more functions per device.
• Adding functionally without adding cost = automation
 – Make most of Eu strength in automated tooling
 – Makes labour costs less significant
 – Design for automation

Complexity is your friend
Wafer scale processes

- Wafer scale processing of 100’s to 1000’s device simultaneous.
 - Huge impact on electronics - similar impact on photonics.
 - Enables volume manufacturing, cost reduction and automation
 - Obvious in PICs, emerging in lenses, expect more
 - E.g wafer level PMT from Hamamatsu.
- But what about prototype volumes for market development
 - Sharing of prototype wafers- EPIKfab, Europractice etc
 - Sharing of fabs
 - Generic photonics foundries
 - Standard processes
- Don’t neglect opportunities in fab equipment

Design for wafer fab.
Leverage existing processes

• CMOS industry invests €31 billion in new equipment annually
 – Constrains design freedom, but
 – Photonics needs to leverage this investment
• CMOS manufacture can be anywhere
 – In, or outside, Europe
• Electronics indicates substantial business in design & test
• Realising new designs is easier close to home

CMOS is your friend - use it wherever you can
Proximity & globalisation

• Photonics is as international market place
• European component suppliers are born exporting
 – Aid to international growth,
• But
 – Physical distance between supplier and customer has a big impact on supply chains
 • Good if your customer is a high value machine tool developer in EU
 – But what if your customer is in Asia?
• Think international for investment as well as markets and suppliers.
High performance

- Europe is seen as Engineering and Innovation leader – leverage this.
 - Culture is quality not cheap and cheerful
- There are High returns from high performance/ specialist devices at modest volume.
 - You don’t have to make volume to make money, it may not even help!
- Markets with low product churn e.g. Medical may be better matched to Eu engineering approach
- Don’t neglect the profits in manufacturing tooling
Standards

- More integration needs standards
- Wafer fabrication needs standards
- Automation needs standards
- Adding complexity needs standards

- To be useful standards need to be defined and adopted

- Applying standard developed by others hurts
 - To benefit Europe needs to lead the definition and adoption of standards.

Standards = maturity

Participate in generation of standards
External Factors

Select highlights
External influence on opportunities

Economic
- Euro uncertainty
- Access to capital
- Demand for efficiency
- Skill shortages
- Vertical integration

Socio-cultural
- Investment expectations
- Risk tolerance

Technology
- Enabling/supportive
- Disruptive
- Competitive

Environmental
- Raw materials
- Carbon and energy efficiency

Political
- Innovation support
- Investment support
- Chemical regulation
- Free trade

European photonics component manufacture

Don’t ignore outside influence
Economic Factors

Macro-economics increasing impact as industry grows

Demand for efficiency
- Creates opportunities replacing past processes

Access to capital
- Think International

Euro uncertainty
- Companies hoarding cash

Final market diversity
- Strengthens industry if you play in multiple markets

Personnel availability
- Significant risk to EU industry

Vertical integration
- Contracting offshore = faster to market/cheaper in near term
- Risk automation being developed elsewhere

Economic viability
Socio-cultural

Investment expectations
- Are you in it for the long or short term
- Don’t neglect the cultural influence

Risk tolerance
- Comfort with risk is culturally embedded
- If don’t take engineering risk products won’t be first to market.
Technology

Enabling/Supportive
- electronics
- software
- materials science
- nano-technology

Competitive
- bonding
- electronics
- nano-technology

Interchangeable

Disruptive
- Fusion - a game changer
- creating a component industry greater than anything we see today
Raw materials
- Rare Earth's, Tellurium, Indium
- Plenty around issue is access
- Takes years to turn on new supplies
- How many photonics researchers refine their own raw materials?

Carbon and energy efficiency
“A focus on energy consumption will have a positive impact on photonics”
Politics

EU and national innovation support
- Change with KETs, Horizon2020 & Photonics PPP
- Job creation
- SME support moving to EU?

Direct investment support
- how to get photonics on par with older industries
- needs scale

Chemical regulation
- REACH could make Eu manufacturing less competitive

Free trade
- We need it
- Previously too small to notice
- Beware PV showdown

Political influence

Photonics is the largest KET, expect more politics
More....

- Project supported by EPIC – European Photonics Industry Consortium.
 - Tom Pearsall / Carlos Lee
- Contributions and inputs from EPIC members, Photonics 21 and participants in Berlin workshop in October 2011 acknowledged
- Full report available from www.Harlinltd.co.uk/reports
 - Detailed analysis of current markets and identification of global and European opportunities/ trends in-
 - Integrated Photonics
 - Optics
 - Sensing, Imaging & Projection
 - Packaging and
 - Test, Measurement & Reliability.

 John.Lincoln@harlinltd.co.uk / Gregory.Flinn@gmx.net
 www.harlinltd.co.uk
 www.epic-assoc.com