Scattering severely limits the visual acuity of an imaging system. This talk discusses how diversity in illumination wavelength can be utilized to circumvent the problem of phase randomization in scattered light fields. Amongst other applications, the introduced method allows for holographic measurements of hidden objects through scattering media or around corners, or for interferometric measurements of macroscopic objects with rough surfaces. This is possible as the technique interrogates the scene at two closely spaced optical wavelengths and computationally assembles a complex “synthetic field” at a “synthetic wave,” which is used for further processing. As the synthetic wavelength is the beat wavelength of the two optical wavelengths, it can be picked orders of magnitudes larger, and the computationally assembled synthetic field becomes immune to the deleterious effect of speckle.
During the talk, different flavors of the technique will be introduced, including a method to retrieve the complex synthetic field in single-shot.
|