Special section in Journal of Micro/Nanolithography, MEMS, and MOEMS highlights emerging MOEMS technologies
BELLINGHAM, Washington, USA -- Commercial demand is driving high-tech research and development in micro-opto-electro-mechanical systems (MOEMS) for diverse applications such as space exploration, wireless systems, and healthcare. A new special section on Emerging MOEMS Technology and Applications in the current issue of the Journal of Micro/Nanolithography, MEMS, and MOEMS (JM3) gathers recent breakthrough achievements and explains how such innovations in the photonics field are poised to emerge in the marketplace. The journal is published by SPIE, the international society for optics and photonics.
![]() |
Above, Fig. 3 from an open-access article by Cahoy, et al., is among illustrations in a JM3 special section on MOEMS technologies: (a) Top view of the Michelson interferometer payload that fits into a 95 mm × 150 mm footprint, which will fit in the 3U CubeSat payload volume. (b) Isometric view of the Michelson interferometer payload. |
Applications in robotics, remote chemical detection and identification, telescopes, bioimaging for clinical use, 3D imaging, and optical communications are among topics covered in the special section's 15 papers on emerging MOEMS technology applications. Articles are available by subscription or pay-per-view in the SPIE Digital Library. Chris Mack, Lithoguru.org, is Editor-in-Chief of JM3.
"This JM3 special section on emerging MOEMS comprises a collection of excellent papers emphasizing new technologies," said Ed Motamedi of Revoltech Microsystems, a guest editor of the special section. "The section includes outstanding new results in commercial research and development in photonics where micro-optics and MEMS are merged and innovative breakthrough devices come to light."
Along with Motamedi, other guest editors of the special section are Joel Kubby of the University of California, Santa Cruz; Patrick Oden of Texas Instruments Inc.; and Wibool Piyawattanametha of the National Electronics and Computer Technology Center.
The technology is well-suited to meet needs now and in the future, Motamedi said.
"Recent demands for emerging miniature components for optical communication, digital imaging, sensors and actuators, wireless systems, and adaptive optics that are low-cost with high performance and high reliability have led researchers to consider batch processing in high-cleanroom environments to be the only solution," he said. "And MEMS, MOEMS, and micro-optics all have a foundation of integrated circuits and involve batch processing in cleanrooms."
The special section features several papers related to presentations at SPIE Photonics West, the premier annual event for the international optics and photonics community, primarily conferences on MOEMS and Miniaturized Systems, MEMS Adaptive Optics, and Emerging Digital Micromirror Device Based Systems and Applications. Topics are:
The open-access article "Wavefront control in space with MEMS deformable mirrors for exoplanet direct imaging" by Kerri Cahoy, et al., of Massachusetts Institute of Technology reports a study to meet the high-contrast requirement to image an Earth-like planet around a Sun-like star. Such contrasts can be obtained through the use of active optics systems operated on space telescopes. High actuator-count deformable mirrors are a key technology for this application.
Other papers in the special section include:
The SPIE Digital Library contains nearly 400,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year. Abstracts are freely searchable, and a rapidly increasing number of full journal articles are published with open access.
SPIE is the international society for optics and photonics, a not-for-profit organization founded in 1955 to advance light-based technologies. The Society serves nearly 256,000 constituents from approximately 155 countries, offering conferences, continuing education, books, journals, and a digital library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided $3.2 million in support of education and outreach programs in 2013.
###
Contact:
Amy Nelson
Public Relations Manager
amy@spie.org
+1 360 685 5478
@SPIEtweets