Proceedings Volume 9918

Metamaterials, Metadevices, and Metasystems 2016

cover
Proceedings Volume 9918

Metamaterials, Metadevices, and Metasystems 2016

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 15 December 2016
Contents: 20 Sessions, 26 Papers, 59 Presentations
Conference: SPIE Nanoscience + Engineering 2016
Volume Number: 9918

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 9918
  • Quantum Phenomena
  • Strong Coupling I
  • Metadevices and Metasystems I
  • Nonlinear Phenomena I
  • Fundamental Phenomena I
  • Active and Tunable Metamaterials I
  • Metasurfaces I
  • Strong Coupling II
  • Fundamental Phenomena II
  • Active and Tunable Metamaterials II
  • Metadevices and Metasystems II
  • Metadevices and Metasystems III
  • 2D Materials and Interfaces
  • Hyperbolic Metamaterials
  • Epsilon Near Zero (ENZ) Metamaterials
  • Novel Materials
  • Nonlinear Phenomena II
  • Metasurfaces II
  • Poster Session
Front Matter: Volume 9918
icon_mobile_dropdown
Front Matter: Volume 9918
This PDF file contains the front matter associated with SPIE Proceedings Volume 9918, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Quantum Phenomena
icon_mobile_dropdown
Recent advances in graphene Nanophotonics (Conference Presentation)
Plasmons in highly doped graphene are highly tuneable by external means (electrically, thermally, magnetically, nonlinearly) and exhibit record levels of confinement. Consequently, the interaction with optical quantum emitters is extraordinarily intense, rendering these excitations an excellent platform for the implementation of quantum optics phenomena at the nanometer scale. In particular, we predict that the strong-coupling regime is reached at the single plasmon level. In this presentation, we will discuss the physics and phenomenology of quantum optics phenomena enabled by graphene plasmons and review recent advances toward its implementation.
Generation of hot plasmonic electrons and heat in metal nanocrystals with hot spots (Conference Presentation)
Alexander Govorov
The efficiency of generation of energetic plasmonic carriers in metal nanostructures strongly depends on the optical design and material composition. This study demonstrates the ability to generate large numbers of hot plasmonic carriers in specially-designed hybrid nanostructures with hot spots. Overall, nanostructures with small sizes or with hot spots can create unusually large numbers of energetic electrons that can be observed using ultra-fast spectroscopy or in photo-chemical experiments.
Novel frontier in quantum metamaterials (Conference Presentation)
Pankaj K. Jha
Metamaterials are artificial materials with exotic physical, chemical and optical properties not found in natural materials. In the past decade they have attracted monumental attention from the scientific community owing to their applications ranging from physics to engineering. However, the conventional solid-state metamaterial platforms suffer from inevitable optical loss, defects which severely curtain their application at few-photon level. The quest for quantum optical applications with metamaterial-based technologies has stimulated researchers to engineer novel lossless materials and construct new platforms. Recently, by integrating two important and timely realms of science − trapped atom physics and metamaterials −, we proposed and theoretically demonstrated a topologically reconfigurable and lossless quantum metamaterial. The atomic lattice quantum metamaterial is immune to aforementioned critical challenges and can be employed at a single-photon level. Moreover, in stark contrast to conventional solid-state platforms, optical lattices provide the necessary freedom to precisely localize (within few nanometer of uncertainty) a probe atom, inside the atomic lattice quantum metamaterial to harness its exotic optical properties. In addition to its aforementioned novel characteristics, our atomic lattice quantum metamaterial offers a unique degree of freedom, namely all-optical control on ultrafast time scales over the photonic topological transition of isofrequency contours using weak fields, not possible with previous solid-state platforms. In this work, we leverage the tools, techniques, scientific advances in the field of atomic, molecular and optical physics, integrated with the concepts used in metamaterials to propose and theoretically demonstrate a novel platform towards quantum metamaterial with novel functionalities by bringing together the best of two worlds.
Hyperbolic metamaterial nanostructures to tune charge-transfer dynamics (Conference Presentation)
Kwang Jin Lee, Yiming Xiao, Jae Heun Woo, et al.
Charge transfer (CT) is an essential phenomenon relevant to numerous fields including biology, physics and chemistry.1-5 Here, we demonstrate that multi-layered hyperbolic metamaterial (HMM) substrates alter organic semiconductor CT dynamics.6 With triphenylene:perylene diimide dyad supramolecular self-assemblies prepared on HMM substrates, we show that both charge separation (CS) and charge recombination (CR) characteristic times are increased by factors of 2.5 and 1.6, respectively, resulting in longer-lived CT states. We successfully rationalize the experimental data by extending Marcus theory framework with dipole image interactions tuning the driving force. The number of metal-dielectric pairs alters the HMM interfacial effective dielectric constant and becomes a solid analogue to solvent polarizability. Based on the experimental results and extended Marcus theory framework, we find that CS and CR processes are located in normal and inverted regions on Marcus parabola diagram, respectively. The model and further PH3T:PCBM data show that the phenomenon is general and that molecular and substrate engineering offer a wide range of kinetic tailoring opportunities. This work opens the path toward novel artificial substrates designed to control CT dynamics with potential applications in fields including optoelectronics, organic solar cells and chemistry. 1. Marcus, Rev. Mod. Phys., 1993, 65, 599. 2. Marcus, Phys. Chem. Chem. Phys., 2012, 14, 13729. 3. Lambert, et al., Nat. Phys., 2012, 9, 10. 4. C. Clavero, Nat. Photon., 2014, 8, 95. 5. A. Canaguier-Durand, et al., Angew. Chem. Int. Ed., 2013, 52, 10533. 6. K. J. Lee, et al., Submitted, 2015, arxiv.org/abs/1510.08574.
Strong Coupling I
icon_mobile_dropdown
Strong light-matter interactions in plasmonic lattices
We show strong coupling involving three different types of resonances in plasmonic nanoarrays: surface lattice resonances, localized surface plasmon resonances on single nanoparticles, and excitations of organic dye molecules. We study spatial coherence properties of a plasmonic nanoarray covered with a dye molecule film by a double slit experiment. A continuous evolution of coherence from the weak to the strong coupling regime is observed. Finally, we show with magnetic nanoparticles how the intrinsic spin-orbit coupling of the material interplays with the symmetries of the nanoparticle array, and mention our latest results on light-matter interactions in plasmonic lattices.
Strong coupling and coherence in disordered semiconductors coupled to surface plasmons (Conference Presentation)
Joël Bellessa, Clementine Symonds, Samuel aberra-guebrou
Localized and delocalized plasmons in metallic nanoparticles are associated with a strongly confined electromagnetic field, inducing an enhanced interaction with emitters located in the close environment of the metal. When the plasmon/emitter interaction becomes predominant compared to the damping in the system, the system is in strong coupling regime leading to light matter hybridization. This strong coupling has been observed with a large number of materials, in particular disordered materials. These materials are constituted by a collection of independent emitters (molecules, semiconductor quantum dots...). The hybrid light/matter state can be described by considering a homogeneous absorbing system using coupled oscillator model. But if the microscopic structure of the molecular film close to a metallic film is considered, collective effects between the delocalized plasmon and the set of molecules are present. The spatial and dynamic properties of a set of molecules in strong coupling are dramatically modified compared to the same molecules in weak coupling (the usual configuration of emission). The excitations are not localised in a single particle anymore but delocalised on a large number of particles due to the formation of an extended hybridised state on several microns. We will describe some properties of disordered systems strongly coupled to surface plasmons and experimental demonstrations of the collective phenomena associated with the strong coupling. In particular we will present an experimental study of the coherent character of the emission of different emitters with a Young’s interferences setup. The system studied consists of J-aggregated dye (TDBC) in interaction with a surface plasmon on silver. The extension of the coherent state will also be discussed.
Effect of metal and dielectric environments on emission kinetics of HITC dye (Conference Presentation)
We study the influence of metallic and dielectric films as well as lamellar multilayered stacks on the emission kinetics of Poly(methyl methacrylate) (PMMA) polymer doped with HITC dye at various concentrations. The two factors affecting the emission kinetics are the Purcell enhancement and self-quenching, which is particularly strong at high dye concentrations. Both effects are modified in different ways in the vicinity of metal/dielectric substrates) and appear to interfere with each other. The detailed account of the experimental results and analysis will be presented at the conference.
Metadevices and Metasystems I
icon_mobile_dropdown
Laser printed plasmonic color metasurfaces (Conference Presentation)
Anders Kristensen, Xiaolong Zhu, Emil Højlund-Nielsen, et al.
This paper describes color printing on nanoimprinted plasmonic metasurfaces by laser post-writing, for flexible decoration of high volume manufactured plastic products. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures. Different surface morphologies that support different plasmonic resonances, and thereby different color appearances, are created by control of the laser pulse energy density. All primary colors can be printed, with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel.
A metamaterial-based single pixel imaging system (Conference Presentation)
Electromagnetic metamaterials have demonstrated unprecedented control over light matter interactions and have realized exotic responses difficult to achieve with natural materials. The ability to achieve real-time control of novel responses exhibited by electromagnetic metamaterials has led to the realization of metadevices and metasystems. Here we experimentally demonstrate two realizations of single pixel imaging systems that rely entirely on all-electronic metamaterial spatial light modulators. The metasystem enables images to be digitally encoded with various measurement matrix coefficients, thus permitting high speed and fidelity imaging.
Macroscale transformation optics enabled by photoelectrochemical etching of silicon (Conference Presentation)
Transformation optics provides a powerful tool for controlling electromagnetic fields and designing novel optical devices. In practice, devices designed by this method often require material optical properties that cannot be achieved at visible or near IR light wavelengths. The conformal transformation technique can relax this requirement to isotropic dielectrics with gradient refractive indices. However, there are few effective methods for achieving large arbitrary refractive index gradients at large scales, so the limitation for building transformation optical devices is still in fabrication. Here we present a photoelectrochemical (PEC) silicon etching technique that provides a simple and effective way to fully control the macro scale profiles of refractive indices by structuring porous silicon on the nanoscale. This work is, to our knowledge, the first demonstration of using light to control porosity in p-type silicon. We demonstrate continuous index variation from n = 1.1 to 2, a range sufficient for many transformation optical devices. These patterned porous layers can then be lifted off of the bulk silicon substrate and transferred to other substrates, including patterned or curved substrates, which allows for the fabrication of three dimensional or other more complicated device designs. We use this technique to demonstrate a gradient index parabolic lens with dimensions on the order of millimeters, which derives its properties from the distribution of nanoscale pores in silicon.
PMMA-based ophthalmic contact lens for vision correction of strabismus
Amir Asgharzadeh Shishavan, Leland Nordin, Paul Tjossem, et al.
In this work we present the design of a novel ophthalmic prismatic contact lens to correct for strabismus. Strabismus, colloquially called "crossed-eyes" or "wall eyes," is a condition in which the eyes are not properly aligned with each other. To our knowledge there are no contact lenses that allow for strabismus correction. To address this, we have designed a poly methyl methacrylate (PMMA) based prismatic correction contact lens. Therefore, we modeled a Fresnel lens with the appropriate optical properties and a human eye in COMSOL Multiphysics Ray Optics module. Our first design was created by mapping Fresnel lenses onto the curved surface of the eye, the focus of light on retina was suboptimal. Next we determined two more potential solutions and improved the light focus on the retina but there were still some issues. A small fraction of light (~5%) diverged and could not be focused. Due to dispersive characteristic of PMMA, chromatic aberration was present. We will use our ray optics solution and convert into a metasurface nanophotonic lens that has the identical behavior and mitigates the issues related with prismatic lens.
Nonlinear Phenomena I
icon_mobile_dropdown
Ultrathin gradient nonlinear metasurfaces with giant nonlinear response (Conference Presentation)
Nishant Nookala, Jongwon Lee, Juan Sebastian Gomez-Diaz, et al.
Extending the ‘flat optics’ paradigm to the nonlinear optics faces important challenges, since, for any practical situation, we are required to simultaneously achieve sub-diffraction phase control and efficient frequency conversion in metasurfaces of sub-wavelength thickness. Here, we experimentally demonstrate giant nonlinear response and continuous phase control of the giant nonlinear response in metasurfaces based on plasmonic nanoresonators coupled to intersubband transitions in semiconductor multi-quantum wells. Over 0.075% of second-harmonic power conversion efficiency is achieved experimentally in a 400-nm-thick metasurface using 10 microns wavelength pump with 20 kW/cm2 intensity.
Light-matter interactions in engineered optical media (Conference Presentation)
The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear media as well as in negative index metamaterials. We will also discuss the possibilities of guiding, manipulating, and processing radio-and microwave-frequency radiation using photonic structures built of filaments in air. In particular, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. Generation of virtual hyperbolic metamaterials requires a regular and spatially invariant distribution of plasma channels. Therefore, we discuss the generation of such large regular arrays of filaments and consider the interactions between multiple filaments, multiple filament formation, and phase-controlled structured filaments.
Nonlinear optics in nonlocal nanowire metamaterials (Conference Presentation)
Viktor A. Podolskiy, Brian Wells, Giuseppe Marino, et al.
Plasmonic nanowire metamaterials, arrays of aligned plasmonic nanowires grown inside an insulating substrate, have recently emerged as a flexible platform for engineering refraction, diffraction, and density of photonic states, as well as for applications in bio- and acoustic sensing. Majority of unique optical phenomena associated with nanowire metamaterials have been linked to the collective excitation of cylindrical surface plasmons propagating on individual nanowires. From the effective medium standpoint, this collective excitation can be described as an additional electromagnetic wave, emanating from nonlocal effective permittivity of metamaterial. The electromagnetic fields associated with such mode can are strongly inhomogeneous on the scale of the unit cell. In this work we analyze the effect of the strong field variation inside nanowire metamaterial on second harmonic generation (SHG). We show that second harmonic generation is strongly enhanced in the frequency region where metamaterial is nonlocal. Overall, the composite is predicted to outperform its homogeneous metal counterparts by several orders of magnitude. Quantitative description of SHG in nanowire medium is developed. The results suggest that bulk second harmonic polarizability emerges as result of collective surface-enhanced SHG by individual components of the composite.
Hot-electron dynamics and thermalization in small metallic nanoparticles (Conference Presentation)
Recent experimental and theoretical advances in the study of graphene plasmons have triggered the search for similar phenomena in other materials that are structured down to the atomic scale, and in particular, alternative 2D crystals, noble-metal monolayers, and polycyclic aromatic hydrocarbons, which can be regarded as molecular versions of graphene. The number of valence electrons that are engaged in the plasmon excitations of these materials is small compared with those of conventional 3D metallic nanostructures, and consequently, the addition or removal of a comparatively small number of electrons produces sizeable changes in their frequencies and near-field distributions. Graphene in particular has been shown to exhibit a large degree of electrical modulation due to its peculiar electronic band structure, which is characterized by a linear dispersion relation and vanishing of the electron density of states at the Fermi level; few electrons are needed to considerably change the Fermi energy. However, plasmons in graphene have only been observed at mid-infrared and lower frequencies, and therefore, small molecular structures and atomically thin metals constitute attractive alternatives to achieve fast electro-optical modulation in the visible and near-infrared (vis-NIR) parts of the spectrum. In this presentation, we review different strategies and recent advances in the achievement of strong optical tunability in the vis-NIR using plasmons of atomic-scale materials, as well as their potential application for quantum optics, light manipulation, and sensing.
Fundamental Phenomena I
icon_mobile_dropdown
Experimental demonstration of the microscopic origin of circular dichroism (Conference Presentation)
Fully two-dimensional metamaterials, also known as metasurfaces comprised of planar-chiral plasmonic metamolecules that are just nanometers thick, have been shown to exhibit chiral dichroism in transmission. The origin of the resulting circular dichroism is rather subtle. Theoretical calculations indicate that this surprising effect relies on finite non-radiative (Ohmic) losses of the metasurface. In the absence of such losses on the nanoscale, the chiral dichroism in transmission (CDT) defined as the difference between the transmission coefficients of the RCP and LCP waves, must identically vanish. This surprising theoretical prediction has never been experimentally verified because of the challenge of measuring non-radiative loss on the nanoscale. We use a combination of nanoscale characterization techniques to demonstrate that the RCP and LCP states of the incident light produce drastically different distributions of optical energy and Ohmic heat dissipation in the two-dimensional chiral nanoantennas, thereby producing a strong chiral dichroism in absorption (CDA). A planar-chiral metasurface, along with its chiral enantiomer, was designed to maximize the CDA in mid-IR range. The CDA gives rise to the CDT observed experimentally in the far-field measurements. We then use scattering-type near-field scanning optical microscopy to map the optical energy distribution on the nanoantennas and their enantiomers in response to the RCP and LCP light. Photo-expansion microscopy, also known as AFM-IR, was then utilized to experimentally demonstrate drastically different Ohmic heating of the nanoantennas under RCP and LCP light illumination. In collaboration with: A.B.Khanikaev, N.Arju, Z.Fan, D.Purtseladze, F.Lu, J.Lee, P.Sarriugarte, M.Schnell, R.Hillenbrand, M.A.Belkin
Light-matter interaction: conversion of the optical energy and momentum to mechanical vibrations and phonons (Conference Presentation)
Interactions between light and material media generally involve an exchange of energy and momentum. Whereas packets of electromagnetic radiation (i.e., photons) are known to carry energy as well as momentum, the eigen-modes of mechanical vibration (i.e., phonons) do not carry any momentum of their own. Considering that, in light-matter interactions, not only the total energy but also the total momentum (i.e., electromagnetic plus mechanical momentum) must be conserved, it becomes necessary to examine the momentum exchange mechanism in some detail. In this presentation, we describe the intricate means by which mechanical momentum is taken up and carried away by material media during reflection, refraction, and absorption of light pulses, thereby ensuring the conservation of linear momentum. Particular attention will be paid to periodically-structured media, which are capable of supporting acoustic as well as optical phonons.
Mapping near-field environments of plasmonic and 2D materials with photo-induced force imaging (Conference Presentation)
Thejaswi U. Tumkur, Chloe Doiron, Xiao Yang, et al.
We demonstrate the ability to map photo-induced gradient forces in materials, using a setup akin to atomic force microscopy. This technique allows for the simultaneous characterization of topographical features and optical near-fields in materials, with a high spatio-temporal resolution. We show that the near-field gradient forces can be translated onto electric fields, enabling the mapping of plasmonic hot-spots in gold nanostructures, and the resolution of sub-10 nm features in photocatalytic materials. We further show that the dispersion-sensitive nature of near-field gradient forces can be used to image and distinguish atomically thin layers of 2-D materials, with high contrast.
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
Martijn Wubs, Ehsan Amooghorban, Jingjing Zhang, et al.
While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.
Active and Tunable Metamaterials I
icon_mobile_dropdown
Coherent control of meta-device (Conference Presentation)
Selective excitation of specific multipolar resonances in matter can be of great utility in understanding the internal make-up of the underlying material and, as a result, in developing novel nanophotonic devices. Many efforts have been addressed on this topic. For example, the emission spectra related to the different multipolar transitions of trivalent europium can be modulated by changing the thickness of the dielectric spacer between the gold mirror and the fluorescent layer. In this talk, we reported the results about active control of the multipolar resonance in metadevices using the coherent control technique. In the coherent control spectroscopy system, the optical standing wave constructed from two counterpart propagation coherent beams is utilized as the excitation. By controlling the time delay between two ultrafast pulses to decide the location of metadivce as the electromagnetic field node or antinode node of standing wave, the absorption related to the specific multipolar resonance can be controlled. Using this technique, with the 30-nm-thick metadevice, the broadband controlling light with light without nonlinearity can be realized. The switching contrast ratios can be as high as 3:1 with a modulation bandwidth in excess of 2 THz. The active control of the high order and complex optical resonance related to the magnetic dipole, electric quadrupole, and toroidal dipole in the metamaterial is reported as well. This research can be applied in the all ultrafast all-optical data processing and the active control of the resonances of metadevice with high order multipolar resonance.
Electrically controlled nonlinear optical generation and signal processing in plasmonic metamaterials (Conference Presentation)
Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).
Widely tunable infrared semiconductor Mie resonators (Conference Presentation)
Tomer Lewi, Prasad P. Iyer, Nikita A. Butakov, et al.
Optical antenna metasurfaces have attracted substantial attention in recent years, as they may enable new classes of planar optical elements. However, actively tuning nanoantenna resonances, whether dielectric or plasmonic, remains an unresolved challenge. In this work, we investigate tuning mid-infrared (MIR) Mie resonances in semiconductor subwavelength particles by directly modulating the permittivity with free charge carriers. Using femtosecond laser ablation, we fabricate spherical silicon and germanium particles of varying sizes and doping concentrations. Single-particle infrared spectra reveal electric and magnetic dipole, quadrupole, and hexapole resonances. We first demonstrate size-dependent Si and Ge Mie resonances spanning the entire mid-infrared (2-16 μm) spectral range. We subsequently show doping-dependent resonance frequency shifts that follow simple Drude models. Taking advantage of the large doping dependence of Si and Ge MIR permittivities, we demonstrate a huge tunability of Mie resonance wavelengths (up to ~ 9 μm) over a broad 2-16 μm MIR range. This tuning range corresponds to changes of permittivity as large as 30 within a single material system, culminating in the emergence of plasmonic modes at high carrier densities and long wavelengths. We also demonstrate dynamic tuning of intrinsic semiconductor antennas using thermo-optic effects. These findings demonstrate the potential for actively tuning infrared Mie resonances, thus providing an excellent platform for tunable metamaterials.
Electronic and thermally tunable infrared metamaterial absorbers
David Shrekenhamer, Joseph A. Miragliotta, Matthew Brinkley, et al.
In this paper, we report a computational and experimental study using tunable infrared (IR) metamaterial absorbers (MMAs) to demonstrate frequency tunable (7%) and amplitude modulation (61%) designs. The dynamic tuning of each structure was achieved through the addition of an active material—liquid crystals (LC) or vanadium dioxide (VO2)--within the unit cell of the MMA architecture. In both systems, an applied stimulus (electric field or temperature) induced a dielectric change in the active material and subsequent variation in the absorption and reflection properties of the MMA in the mid- to long-wavelength region of the IR (MWIR and LWIR, respectively). These changes were observed to be reversible for both systems and dynamic in the LC-based structure.
A single dielectric nanolaser
Tsung-Yu Huang, Ta-Jen Yen
To conquer Ohmic losses from metal and enhance pump absorption efficiency of a nanolaser based on surface plasmon polariton, we theoretically calculate the first magnetic and electric scattering coefficient of a dielectric sphere under a plane wave excitation with a dielectric constant of around 12. From this calculation, we could retrieve both negative effective permittivity and permeability of the sphere simultaneously at frequencies around 153 THz in the aids of Lewin’s theory and the power distribution clearly demonstrate the expected negative Goos-Hänchen effect, which usually occurred in a negative refractive waveguide, thus creating two energy vortices to trap incident energy and then promoting the pump absorption efficiency. Meanwhile, a magnetic lasing mode at 167.3 THz is demonstrated and reveals a magnetic dipole resonance mode and a circulating energy flow within the dielectric sphere, providing a possible stopped light feedback mechanism to enable the all-dielectric nanolaser. More importantly, the corresponding mode volume is reduced to 0.01λ3 and a gain threshold of 5.1×103 is obtained. To validate our design of all-dielectric nanolaser, we employ finite-difference-time-domain simulation software to examine the behavior of the nanolaser. From simulation, we could obtain a pinned-down population inversion of 0.001 and a lasing peak at around 166.5 THz, which is very consistent with the prediction of Mie theory. Finally, according to Mie theory, we can regard the all-dielectric nanolaser as the excitation of material polariton and thus could make an analogue between lasing modes of the dielectric and metallic nanoparticles.
Metasurfaces I
icon_mobile_dropdown
Nonmagnetic metamaterial landscapes for guided electromagnetic waves
S. Viaene, V. Ginis, J. Danckaert, et al.
Transformation optics provides a geometry-based tool to create new components taking advantage of artificial metamaterials with optical properties that are not available in nature. Unfortunately, although guided electromagnetic waves are crucial for optical circuitry, transformation optics is not yet compatible with two-dimensional slab waveguides. Indeed, after determining the propagation of confined waves along the waveguide with a two-dimensional coordinate transformation, the conventional application of transformation optics results in metamaterials whose properties are insensitive to the coordinate perpendicular to the waveguide, leading to bulky, and therefore impractical, designs. In this contribution, we formulate an alternative framework that leads to feasible coordinate-based designs of two-dimensional waveguides. To this end, we characterize a guided transverse-magnetic light mode by relevant electromagnetic equations: a Helmholtz equation to account for wave propagation and a dispersion relation to impose a continuous light profile at the interface. By considering how two-dimensional conformal transformations transform these equations, we are able to materialize the coordinate-designed flows with a nonmagnetic metamaterial core of varying thickness, obtaining a two-dimensional device. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities, a beam bender, a beam splitter and a conformal lens, on a qualitative and quantitative level, by respectively comparing the electromagnetic fields inside and the transmission of our two-dimensional metamaterial devices to that of their three-dimensional counterparts at telecom wavelengths. As a result, we envision that one coordinate-based multifunctional waveguide component may seamlessly split and bend light beams on the landscape of an optical chip.
A functional metasurface platform with unique building blocks: light manipulation and beam shaping
This paper presents an engineered metasurface which can serve functionalities such as anomalous bending, focusing, and beam shaping over the circularly polarized (CP) incident beam. The building block is a bilayer double split-loop resonators (DSLRs) where it can fully transmit the impinging light and control phase only by rotation of unit-cell and not by changing the structural parameters which can greatly facilitate the fabrication process. The mechanism behind this fascinating feature can be described as the conversion of an impinging CP incident beam into the opposite handedness and obtaining a geometrical phase shift equal to twice the rotating angle of DSLRs. It is illustrated that full transmission with 2π phase shift can be achieved with the proposed metasurface. Unique designs with helicity dependency to realize anomalous bending, bifunctional convergence/divergence, and flat-top beam creation with applying lossless beam shaping approach are presented.
Recent advances in metasurfaces and all-dielectric nanophotonics (Conference Presentation)
INVITED We demonstrate that all-dielectric metasurfaces provide a powerful platform for highly efficient flat optical metadevices, owing to their strong electric and magnetic dipolar response accompanied with negligible losses. We demonstrate broadband almost reflectionless metasurfaces for highly efficient amplitude, phase, and polarization manipulation based on the generalized Huygens principle. In this approach we utilize the superposition of several electric and magnetic multipolar scattering contributions of the constituent meta-atoms to achieve destructive interference in reflection over a large spectral bandwidth. By employing this approach, we demonstrate reflectionless broadband half-wave plates, quarter-wave plates, and vector beam q-plates that can operate across several telecom bands.
Strong Coupling II
icon_mobile_dropdown
Universal local density of states for nanoplasmonics
B. Keys, T. V. Shahbazyan
We obtain local density of states (LDOS) for any nanoplasmonic system in the frequency range dominated by a localized plasmon. By including the Ohmic losses in a consistent way, we show that the plasmon LDOS is proportional to the local field intensity normalized by the absorbed power. We obtain explicit formulae for energy transfer (ET) between quantum emitters and plasmons as well as between donors and acceptors situated near a plasmonic structure. In the latter case, we find that the plasmon-assisted ET rate is proportional to the LDOS product at the donor and acceptor positions, obtain, in a general form, the plasmon ET enhancement factor, and establish the transition onset between Forster-dominated and plasmon-dominated ET regimes.
Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)
Blake S. Simpkins, Kenan P. Fears, Walter J. Dressick, et al.
Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch (~1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.
Visualizing enantioselective optical forces with chiral force microscopy (Conference Presentation)
Yang Zhao, Amr Saleh, Marie-Anne van de Haar, et al.
Enantiomer separation is a critical step in many chemical syntheses, particularly for pharmaceuticals, but prevailing chemical methods remain inefficient. Here, we introduce an optical technique to sort chiral specimens using coaxial plasmonic apertures. These apertures are composed of a deeply subwavelength dielectric channel embedded in silver (or gold) and can stably trap sub-20-nm dielectric specimens. Using both full-field simulations and analytic calculations, we first show that selective trapping of enantiomers can be achieved with circularly polarized illumination and proper index-matching of the immersed liquid with the particles being trapped. Opposite enantiomers experience distinct trapping forces in both sign and magnitude: one is trapped in a deep potential well while the other is repelled with a potential barrier. These potentials maintain opposite signs across a range of chiral polarizabilities and enantiomer-aperture separations. We also demonstrate how atomic force microscopy can be used to directly probe the near field optical forces from our coaxial nano-aperture. Our measurement reveals the spatial distribution of the optical near-field forces on a nanometer-sized dielectric specimen. To directly visualize the enantio-selective optical forces, we pattern silicon AFM-probes with chiral patterns. Our near-field force mapping indicates a differentiable force in the piconewton range on the chiral probes, exerted by our coaxial aperture with circularly polarized illumination. Our theoretical and experimental demonstrations indicate that the interaction of chiral light and chiral specimens can be mediated by achiral plasmonic apertures, providing a possible route toward all-optical enantiopure syntheses.
Controlled Fano resonances via symmetry breaking in metamaterials for high-sensitive infrared spectroscopy
Shuhei Hara, Atsushi Ishikawa, Takuo Tanaka, et al.
A high-sensitive polarized surface-enhanced infrared absorption (polarized SEIRA) is proposed and demonstrated by utilizing the resonant coupling of Fano-resonant mode of the asymmetric metamaterials and IR vibrational mode of a polymer nano-film. The asymmetric metamaterials consisting of an Au nano-rod pair with a coupling nano-antenna were fabricated and characterized to demonstrate the controlled Fano resonances at 1730 cm-1, which spectrally overlapped with the C=O stretching vibrational mode. In the co-polarized SEIRA measurement, the C=O mode of the PMMA nano-film was clearly observed as a conventional anti-resonant peak within the Fano line-shape of the metamaterial. For the cross-polarized case, on the other hand, a distinctive dip appeared within a cross-polarized transmission peak of the metamaterial. Since the unwanted background is strongly suppressed in the cross-polarized detection scheme, the signal contrast was dramatically improved, allowing for the attomole detection of the C=O bond in the far-field measurement. Our metamaterial approach achieves the significant improvement of signal-to-background ratio in the far-field measurement, thus paving the way toward the high-sensitive analysis of functional group in direct IR spectroscopy.
Fundamental Phenomena II
icon_mobile_dropdown
Attosecond nanoscale physics of solids in strong ultrafast optical fields (Conference Presentation)
Mark I Stockman
We present our latest results for a new class of phenomena in condensed matter nanooptics when a strong optical field ~1-3 V/Å changes a solid within optical cycle [1-7]. Such a pulse drives ampere-scale currents in dielectrics and adiabatically controls their properties, including optical absorption and reflection, extreme UV absorption, and generation of high harmonics [8] in a non-perturbative manner on a 100-as temporal scale. Applied to a metal, such a pulse causes an instantaneous and, potentially, reversible change from the metallic to semimetallic properties. We will also discuss our latest theoretical results on graphene that in a strong ultrashort pulse field exhibits unique behavior [9, 10]. New phenomena are predicted for buckled two-dimensional solids, silicene and germanine [11]. These are fastest phenomena in optics unfolding within half period of light. They offer potential for petahertz-bandwidth signal processing, generation of high harmonics on a nanometer spatial scale, etc. References 1. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, Metallization of Nanofilms in Strong Adiabatic Electric Fields, Phys. Rev. Lett. 105, 086803-1-4 (2010). 2. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, Predicted Ultrafast Dynamic Metallization of Dielectric Nanofilms by Strong Single-Cycle Optical Fields, Phys. Rev. Lett. 107, 086602-1-5 (2011). 3. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, Optical-Field-Induced Current in Dielectrics, Nature 493, 70-74 (2013). 4. M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, Controlling Dielectrics with the Electric Field of Light, Nature 493, 75-78 (2013). 5. V. Apalkov and M. I. Stockman, Metal Nanofilm in Strong Ultrafast Optical Fields, Phys. Rev. B 88, 245438-1-7 (2013). 6. V. Apalkov and M. I. Stockman, Theory of Dielectric Nanofilms in Strong Ultrafast Optical Fields, Phys. Rev. B 86, 165118-1-13 (2012). 7. F. Krausz and M. I. Stockman, Attosecond Metrology: From Electron Capture to Future Signal Processing, Nat. Phot. 8, 205-213 (2014). 8. T. Higuchi, M. I. Stockman, and P. Hommelhoff, Strong-Field Perspective on High-Harmonic Radiation from Bulk Solids, Phys. Rev. Lett. 113, 213901-1-5 (2014). 9. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Wannier-Stark States of Graphene in Strong Electric Field, Phys. Rev. B 90, 085313-1-11 (2014). 10. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Graphene in Ultrafast and Superstrong Laser Fields, Phys. Rev. B 91, 0454391-8 (2015). 11. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Ultrafast Field Control of Symmetry, Reciprocity, and Reversibility in Buckled Graphene-Like Materials, Phys. Rev. B 92, 045413-1-9 (2015).
Breaking reciprocity in nanophotonics: optomechanical interactions (Conference Presentation)
Andrea Alù
Lorentz reciprocity refers to a fundamental symmetry relation that governs several physical systems. In this talk, we will discuss our recent theoretical, design, experimental, and commercialization efforts in the area of non-reciprocal photonics, using temporal modulation of metamaterial elements to realize isolation for guided waves in nanophotonic systems and radio-frequency circuits, and for propagating waves in free-space, as well as to break the symmetry between emission and absorption in optical and radio-frequency open systems.
Extrinsic spin- and orbital-Hall effect in cyclic group symmetric metamaterial (Conference Presentation)
Yeon Ui Lee, Igor Ozerov, Frederic Bedu, et al.
We designed and fabricated cyclic group symmetric metamaterials (CGSMs), anisotropic media showing an extrinsic optical orbital Hall effect. An exchange of angular momentum between spin and orbital angular momenta takes place in an optical beam propagating through anisotropic media such as plasmonic nanoantennas of concentric ring and tapered arc (TA) shape. In case of TA antenna an cross-polarized circular polarization scattered beam exhibits an extrinsic orbital Hall effect. The CGSMs possess n-fold rotation symmetry and they are composed of plasmonic TA antennas. In case of circular polarization, the TA antennas effectively scatter incident light depending on the beam helicity. Both amplitude and phase gradients take place along the azimuthal direction for cross-polarized beams. We used electron beam lithography to fabricate 30nm thick gold metamaterials patterned on borosilicate glass substrates. Six types of CGSMs with the symmetry order n from 1 to 6 were fabricated and measured. Each CSGM is composed of multiple TA antennas with the width varying from 45nm to 150nm organized in 8*n azimuthal segments of concentric rings repeated with 600nm radial spacing. Measurements of orbital Hall transverse shifts of circularly polarized beams of right/left helicity were carried out at a wavelength of 1300nm. Because TA antennas are arranged in a metamaterial with a cyclic group n-fold rotation symmetry, the extrinsic orbital Hall transverse shifts from CGSM exhibit a geometrical pattern with the same symmetry. However, CGSMs with odd and even symmetry orders show a strongly contrasting difference in the character of transverse shifts. The observed geometrical patterns agree well with those obtained from FDTD theoretical simulation.
Photonic spin Hall effect with nearly 100% efficiency (Conference Presentation)
Photonic spin hall effect (PSHE), that spin-polarized photons can be laterally separated in transportation, gains increasing attention from both science and technology, but available mechanisms either require bulky systems or exhibit very low efficiencies. Here we demonstrate that a giant PSHE with ~100% efficiency can be realized at certain meta-surfaces with deep-subwavelength thicknesses. Based on rigorous Jones-Matrix analysis, we establish a general criterion to design meta-surfaces that can realize 100%-efficiency PSHE. The criterion is approachable from two distinct routes at general frequencies. As a demonstration, two microwave meta-surfaces are fabricated and then experimentally characterized, both showing ~90% efficiencies for the PSHE. Our findings pave the road for many exciting applications based on high-efficiency manipulations of photon spins, with a polarization detector experimentally demonstrated here as an example.
Molding the spin flow of light in valley photonic crystals (Conference Presentation)
Jian-Wen Dong, Xiao-Dong Chen, Hanyu Zhu, et al.
Metamaterials offer unprecedented opportunity to engineer fundamental band dispersions which enable novel optoelectronic functionalities and devices. Precise control of photonic degrees of freedom can always succeed to manipulate the flow of light. For example, photonic net spin flows such as one-way transports and spin-directional locking have been realized at the boundary of topologically-protected photonic metacrystals. But this is not the only way to achieve net spin flow in solid state systems. Valley degree of freedom may provide a new route to modulate the spin flow in bulk crystals without the assist of boundary. Here, we show the molding of spin flow of light in valley photonic crystals. The coupled valley and spin physics is illustrated analytically. The associated photonic valley Hall effect and unidirectional net spin flow are well demonstrated inside the bulk crystals, instead of the assist of topologically non-triviality. We also show the independent control of valley and topology, resulting in a topologically protected flat edge state. Valley photonic crystals may open up a new route towards the discovery of fundamentally novel states of light and possible revolutionary applications.
Active and Tunable Metamaterials II
icon_mobile_dropdown
gram-scale metafluids and large area tunable metamaterials: design, fabrication, and nano-optical tomographic characterization (Conference Presentation)
Jennifer A. Dionne
Advances in metamaterials and metasurfaces have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhanced magnetic or chiral transitions in ions and molecules. However, most metamaterials to date have been limited to solid-state, static, narrow-band, and/or small-area structures. Here, we introduce the design, fabrication, and three-dimensional nano-optical characterization of large-area, dynamically-tunable metamaterials and gram-scale metafluids. First, we use transformation optics to design a broadband metamaterial constituent - a metallo-dielectric nanocrescent - characterized by degenerate electric and magnetic dipoles. A periodic array of nanocrescents exhibits large positive and negative refractive indices at optical frequencies, confirmed through simulations of plane wave refraction through a metamaterial prism. Simulations also reveal that the metamaterial optical properties are largely insensitive to the wavelength, orientation and polarization of incident light. Then, we introduce a new tomographic technique, cathodoluminescence (CL) spectroscopic tomography, to probe light-matter interactions in individual nanocrescents with nanometer-scale resolution. Two-dimensional CL maps of the three-dimensional nanostructure are obtained at various orientations, while a filtered back projection is used to reconstruct the CL intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. Finally, we demonstrate the fabrication of dynamically tunable large-area metamaterials and gram-scale metafluids, using a combination of colloidal synthesis, protein-directed assembly, self-assembly, etching, and stamping. The electric and magnetic response of the bulk metamaterial and metafluid are directly probed with optical scattering and spectroscopy. Using chemical swelling, these metamaterials exhibit reversible, unity-order refractive index changes that may provide a foundation for new adaptive optical materials in sensing, solar, and display applications.
Metadevices and Metasystems II
icon_mobile_dropdown
Semiconductor metafilms devices (Conference Presentation)
Many conventional optoelectronic devices consist of thin, stacked films of metals and semiconductors. In this presentation, I will demonstrate how one can improve the performance of such devices by nano-structuring the constituent layers at length scales below the wavelength of light. The resulting metafilms and metasurfaces offer opportunities to dramatically modify the optical transmission, absorption, reflection, and refraction properties of device layers. This is accomplished by encoding the optical response of nanoscale resonant building blocks into the effective properties of the films and surfaces. To illustrate these points, I will show how nanopatterned metal and semiconductor layers may be used to enhance the performance of solar cells, photodetectors, and enable new imaging technologies. I will also demonstrate how the use of active nanoscale building blocks can facilitate the creation of active metafilm devices.
Microwave focusing with uniaxially symmetric gradient index metamaterials
Sara Wheeland, Oren Sternberg, Israel Perez, et al.
Previous efforts to create a metamaterial lens in the microwave X band frequency range focused on the development of a device with biaxial symmetry. This allows for focusing solely along the central axis of propagation. For applications involving wave direction or energy diversion, focusing may be required off the central axis. This work explores a metamaterial device with uniaxial symmetry, namely in the direction of propagation. Ray-trace optimization and full-wave finite element simulations contribute to the design of the lens. By changing the placement of the focus, we achieve further control of the focus parameters. While the present work uses coils, the unit cell can consist of any structure or material.
Forked grating coupler optical vortex beam interface for silicon photonics
The forked grating coupler (FGC) is a novel low-profile device compatible with silicon photonics that is capable of sensitive detection or efficient radiation of Optical Vortex (OV) light beams conveying orbital optical angular momentum (OAM). The FGC device combines the idea of a Bragg coupler with the forked hologram to create an integrated optics device that can selectively and efficiently couple selected optical vortex modes at near-normal incidence into planar confined dielectric waveguide modes of a photonic IC. FGCs retain many of the advantages of Bragg couplers, including convenience of placement and fabrication, reasonable bandwidth, small size, and CMOS process compatibility. In this work, prototype designs of FGC structures for 1550 nm wavelength have been developed for implementation on silicon on insulator (SOI) substrate. Fully vectorial three-dimensional (3D) electromagnetic simulation has allowed performance to be optimized over a range of structural parameters. Results have been evaluated against optical performance metrics including overall efficiency, mode match efficiency, and crosstalk between OV modes. Candidate FGC devices have been fabricated on SOI with e-beam lithography and tested optically. Tolerance to etch depth error has been evaluated.
Metadevices and Metasystems III
icon_mobile_dropdown
Metamaterial devices for molding the flow of diffuse light (Conference Presentation)
Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts’ shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.
Holographic metasurface systems for beam-forming and imaging (Conference Presentation)
David R. Smith
Metamaterials offer an alternative perspective for the design of new materials and devices. The advantage of the metamaterial description is that certain device solutions can more easily be recognized. Here, we discuss broadly the impact of the metamaterial design philosophy on quasi-optical apertures based on patterned holographic metasurfaces. In a guided wave format, in which radiating complementary metamaterial irises are patterned on the upper plate of a microstrip or parallel plate waveguide, the reference wave is equivalent to the guided wave and the entire structure becomes a compact, efficient holographic, aperture antenna. We have developed a millimeter-wave imaging system that makes use of a set of complementary metamaterial waveguide panels to form a frequency-diverse aperture. In this context, the metamaterial aperture produces a complex radiation pattern that varies spatially as a function of the driving frequency; a frequency sweep over a selected bandwidth thus illuminates a region of space with a set of distinct radiation patterns. Collecting the returned signal reflected by illuminated objects within the scene, a set of measurements can be made from which an image of the scene can be reconstructed. This imaging application provides a useful example of the introduction, integration and optimization of a metamaterial aperture into a complete system, where all other aspects of the system—including algorithms, calibration, software and electronics—must be tailored for the particulars of the metamaterial component. As metamaterials transition from science to technology, these aspects may prove just as challenging and interesting as the underlying metamaterial components.
Optical directional coupler and Mach-Zehnder interferometer enhanced via 4H-SiC phonons
Surface phonon polaritons (SPhPs), similar to it cousin phenomenon surface plasmon polaitons (SPPs), are quasi-neutral particles resulting from light-matter coupling that can provide high modal confinement and long propagation in the mid to long infrared (IR). Mach-Zehnder interferometer (MZI) is a combination of two connected optical directional couplers (ODC). With the use of SPhPs, sub-wavelength feature sizes and modal areas can be achieved and to this end a hybrid SPhP waveguide, where propagation length and modal area can be trade-off, will be employed in the design of an ODC and MZI. This endeavor analyzes and characteristics both an ODC and MZI using commercially available numerical simulation software employing finite element method (FEM). The ODC and MZI are design using a novel SPhP hybrid waveguide design where a 4H-SiC substrate provides the polariton mode. The output ports power and relative phase difference between ports are investigated. SPhP enhanced ODC and MZI has applications including, but not limited to, next-generation ultra-compact photonic integrated circuits and waveguide based IR sensing.
Integration of periodic structure and highly narrowband MEMS sensor to enhance crack detection ability in steel structures
Acoustic emission method is a nondestructive evaluation method based on the propagation of elastic waves due to the sudden change in strain field caused by newly formed fracture surfaces. While the method has been successfully applied to many structures, the influence of friction emissions limits the diverse use of the method in large-scale structures. This research integrates the metamaterial geometry to block low frequency friction signals while allowing high frequency signals due to the crack growth. The phononic structure is composed of periodic arrangement of holes in a steel plate that prohibits propagation of elastic waves near the band gap of 60 kHz. The dispersion curve of the periodic structure is calculated using finite element modeling of a unit cell in COMSOL Multiphysics. As the band gap of the periodic structure is highly narrowband, the acoustic sensing is achieved by highly narrowband capacitive type Micro-Electro- Mechanical Systems (MEMS) sensors tuned to the desired stop band frequency. The integration of periodic plate design and MEMS sensors provides wave-field focusing to reduce wave attenuation, and prevent interference of secondary waves sources, such as friction, with the primary waveforms. The waveguiding feature of the designed structure is experimentally investigated and discussed in this paper.
The effect of the triblock properties on the morphologies and photophysical properties of nanoparticle loaded with carboxylic dendrimer phthalocyanine
Huafei Lv, Zhe Chen, Xinxin Yu, et al.
Photodynamic therapy (PDT) is an emerging alternative treatment for various cancers and age-related macular degeneration. Phthalocyanines (Pcs) and their substituted derivatives are under intensive investigation as the second generation photosensitizers. A big challenge for the application of Pcs is poor solubility and limited accumulation in the tumor tissues, which severely reduced its PDT efficacy. Nano-delivery systems such as polymeric micelles are promising tools for increasing the solubility and improving delivery efficiency of Pcs for PDT application. In this paper, nanoparticles of amphiphilic triblock copolymer poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) were developed to encapsulate 1-2 generation carboxylic poly (benzyl aryl ether) dendrimer. The morphologies and photophysical properties of polymeric nanoparticles loaded with 1-2 generation dendritic phthalocyanines (G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m) were studied by AFM, UV/Vis and fluorescent spectroscopic method. The morphologies of self-assembled PLL-PEG-PLL aggregates exhibited concentration dependence. Its morphologies changed from cocoon-like to spheral. The diameters of G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m were in the range of 33-147 nm, increasing with the increase of the concentration of PLL-PEG-PLL. The morphologies of G2-ZnPc(COOH)16/m also changed from cocoon-like to sphere with the increase of the concentration of PLL-PEG-PLL. It was found that, the no obviously Q change was observed between the free phthalocyanines and nanoparticles. The fluorescence intensity of polymer nanoparticles were higher enhanced compared with free dendritic phthalocyanines. The dendrimer phthalocyanine loaded with poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) presented suitable physical stability, improved photophysical properties suggesting it may be considered as a promising formulation for PDT.
2D Materials and Interfaces
icon_mobile_dropdown
Frequency conversion in optically-excited active metadevices (Conference Presentation)
The plethora of nonlinear optical phenomena can provide an innovative route for developing subwavelength-scale functional optical devices. One of the examples may be the nonlinear mixing of low energy photons (of which the wavelength is a few hundred micrometers) in atomically-thin materials. Here,the experimental proof on the optically-induced nonlinear mixing of terahertz resonances in graphene-integrated metadevices will be presented. Upon ultrafast optical excitation, the conductivity of graphene is reduced for a few picoseconds due to the increase in the Dirac-fermion scattering rate. This fast temporal change of graphene conductivity provides time-varying perturbation to the graphene-integrated metadevices and generates a difference frequency component by the mixing of meta-atoms’ two electric dipole resonances. Ultrafast terahertz spectroscopy corroborates that the characteristic difference-frequency resonance indeed originates from the coupled interaction between graphene and meta-atoms. Further elaborating this concept, it will be shown that the sudden merging of distinct meta-atoms’ resonances by ultrafast optical excitation can also result in frequency conversion.
Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)
Siyuan Dai, Qiong Ma, Zhe Fei, et al.
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the “hyperlens” for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Unpaired Dirac cones in photonic lattices and networks (Conference Presentation)
Unpaired Dirac cones are bandstructures with two bands crossing at a single point in the Brillouin zone. It is known that photonic bandstructures can exhibit pairs of Dirac cones, similar to graphene; unpaired cones, however, have not observed in photonics, and have been observed in condensed-matter systems only among topological insulator surface states. We show that unpaired Dirac cones occur in a 2D photonic lattice that is not the surface of a 3D system. These modes have unusual properties, including conical diffraction and antilocalization immune to short-range disorder, due to the absence of "intervalley" scattering between Dirac cones.
Broadband enhanced graphene photodetector with fractal metasurface (Conference Presentation)
Graphene has been demonstrated to be a promising photo-detection material because of its ultra-broadband absorption, compatibility with CMOS technology, and dynamic tunability. There are multiple known photo-detection mechanisms in graphene, among which the photovoltaic effect has the fastest response time thus is the prioritized candidate for ultrafast photodetector. There have been numerous efforts to enhance the intrinsically low sensitivity in graphene photovoltaic detectors using metallic plasmonic structures, but such plasmonic enhancements are mostly narrowband and polarization dependent. In this work, we propose a gold Cayley-tree fractal metasurface design that has a multi-band resonance, to realize broadband and polarization-insensitive plasmonic enhancement in graphene photovoltaic detectors. When illuminated with visible light, the fractal metasurface exhibits multiple hotspots at the metal-graphene interface, where the electric field of the incident electromagnetic wave is enhanced and contributes to generating excess electron-hole pairs in graphene. The large metal-graphene interface length in the fractal metasurface also helps to harvest at a higher efficiency the electron-hole pairs by built-in electric field due to metal-graphene potential gradient. To demonstrate the concept, we carried out experiment using Ar-Kr CW laser, an optical chopper, and lock-in amplifier. We obtained experimentally an almost constant ten-fold enhancement of photocurrent generated on the fractal metasurface compared to that generated on the plain gold-graphene edge, at all tested wavelengths (488 nm, 514 nm, 568 nm, and 647 nm). We also observed an unchanged photoresponse with respect to incident light polarization angles, which is a result of the highly symmetric geometry of the fractal metasurface.
Hyperbolic Metamaterials
icon_mobile_dropdown
Hyper-structured illumination (Conference Presentation)
Supporting propagating modes with the wavenumbers unlimited by the frequency, hyperbolic metamaterials can dramatically improve the imaging resolution of the structured illumination microscopy.
Photonic hypercrystals: new media for control of light-matter interaction (Conference Presentation)
Photonic crystals and metamaterials have emerged as the most widely used artificial media for controlling light-matter interaction in solid state systems. The former relies on Bragg scattering from wavelength sized periodic modulation in the dielectric environment while the latter has sub-wavelength sized sub-structures that are designed to give an effective medium response. Here we report a new class of artificial photonic media: “photonics hypercrystals” for control of light matter interaction. Hypercrystals are distinct from photonic crystals, as both material scales involved - the hypercrystal period and the unit cells of its material components - are sub-wavelength. And they are also not metamaterials, as their electromagnetic response is qualitatively different from the expected averaged behavior. This fundamental difference results in a number of nontrivial electromagnetic properties of the hypercrystals, that can be observed in experiment and even lead to practical devices - from broadband enhancement of spontaneous emission and light out-coupling which has never to date been demonstrated simultaneously in either metamaterials or photonic crystals, to Dirac physics and singularities in sub-wavelength sized lattice. Specifically, we demonstrate enhanced spontaneous emission rate (x20) and light out-coupling (x100) from a two-dimensional metal-dielectric hypercrystal embedded with quantum dots. Such designer photonic media with complete control over the optical properties provide a new platform for broadband control of light-matter interaction.
Berreman approach to electromagnetic wave and beam propagation in anisotropic metamaterials
The Berreman matrix method is used to analyze the polarization and propagation of electromagnetic waves and beams in anisotropic metamaterials. The metamaterial, comprising a multilayer structure of alternating metal and dielectric layers, is modeled as an effective anisotropic medium. The Maxwell’s equations for electromagnetic propagation are then represented as a set of coupled differential equations using the Berreman matrix. These coupled equations are then solved analytically and cross checked numerically using MATLAB® for plane wave propagation. The analysis can be extended to Gaussian beam propagation through such anisotropic metamaterials using the angular plane wave spectral approach.
Propagation properties of metallic dielectric cladded waveguides
V. F. Rodriguez-Esquerre, Juarez Caetano da Silva, Zhaowei Liu
The propagation properties of 1D waveguides composed by a dielectric core and a multilayered metallic dielectric cladding are numerically analyzed in details for applications covering the O-E-S-C-L-U optical communication bands. The propagation length, penetration depth and the figure of merit as a function of their geometrical and optical parameters are presented. The strong dependence of their properties with their constituent materials has been observed. Long propagation distances with high values of figure of merit can be obtained, opening the possibility to develop devices of high performance in the optical band under inspection.
Epsilon Near Zero (ENZ) Metamaterials
icon_mobile_dropdown
Homogenization of epsilon near zero composite metamaterials (Conference Presentation)
Epsilon Near Zero (ENZ) metamaterials are interest for a broad range of applications in optoelectronics, communication and photovoltaic. Composite metal-dielectric metamaterials can be designed to exhibit ENZ in a specific frequency range. However, the frequency range if the ENZ is oftentimes limited. Recently, we developed a few different routs to designs metal-dielectric metamaterials with a broadband ENZ in the visible and infrared frequency domain. In this talk, I will present a homogenization theory for 1D and 2D metamaterials based on a few different geometries of metal-dielectric composites. Our approach is conceptually simple, elegant, and technically feasible, while its underlying physics is clear. We use a homogenization technique to estimate the real part of the effective permittivity nulling for a few different geometries of metal-dielectric composites. The design of broadband epsilon-near-zero metamaterials have been demonstrated through the solution of an inverse problem. Furthermore, we consider a few different geometries for realization of a broadband ENZ, such as core-shell spherical nanoparticle and nano-cylinders.
Giant field enhancement in anisotropic epsilon-near-zero films (Conference Presentation)
Mohammad Kamandi, Caner Guclu, Filippo Capolino
We investigated anisotropic epsilon-near-zero (AENZ) films under TM-polarized plane wave incidence and found they possess peculiar properties. In particular we studied uniaxially anisotropic films where either the permittivity along the surface normal or along the transverse plane tends to zero while the other one does not. Previously, numerous applications of isotropic epsilon-near-zero (ENZ) films including radiation pattern tailoring, enhanced harmonic generation, optical bistability and energy squeezing have been studied. A notable property of these materials is the capability of enhancing electric field. In this paper the capability of AENZ films in local electric field enhancement has been quantified and several AENZ conditions are reported with superior performance in comparison to (isotropic) ENZ films. Specifically, sensitivity to film thickness and losses, and the range of angles of incidence have been elaborated with the aim of achieving large electric field enhancement in the film. It has been proved that in comparison to the (isotropic) ENZ case the AENZ film’s field enhancement is not only much larger but it also occurs for a wider range of angles of incidence. Furthermore the field enhancement in AENZ does not exhibit significant dependence on the film thickness unlike the isotropic case. The effect of loss on the value of the field enhancement is also investigated emphasizing the advantages of AENZ versus ENZ. Realization of AENZ materials can be done by a multilayered media made of a stack of conductive and insulator layers or by stacking semiconductor layers. This giant field enhancement is an important target in nonlinear optics for applications like second harmonic generation and other applications like light generation
Zero-index photonic crystal as low-aberration optical lens (Conference Presentation)
Jian-Wen Dong, Xin-Tao He, Wei-Min Deng, et al.
Fermionic Dirac cones have attracted tremendous attention in the electronic systems, such as topological insulator and graphene. As the classical analogs, photonic Dirac dispersions at the center of momentum space reveal a unique feature other than fermionic systems, i.e. zero-refractive-index behavior. In principle, such all-dielectric metamaterial is easily capable of scaling into optical wavelength, but it is seldom to address and promote to functional device with large area in silicon nanophotonics. Here, we show a prototype of large-area concave metalens consisting of silicon nanopillars array on silicon platform. The device was etched from n-type (100) single crystalline Si substrate by a top-down method. In theoretical prediction, such metalens can be modeled as a two-dimensional photonic crystal with conical bands at near-infrared wavelength. In this way, light focusing effect in the large-area metalens was observed directly through the out-of-plane scattering from the irregular substrate. The focal spot, which was very close to the curvature center of the metalens surface, indicated a little phase change of near-zero refractive index silicon photonic crystal. The effective refractive index retrieved from optical microscope images was quantitatively consistent with those from effective medium theory. The device performs as a near-aberration-free metalens near Dirac wavelength due to zero refractive index. Furthermore, it reveals a potential application for spectral detection based on wavelength-dependent effective index. The proposed strategy provides a feasible way for silicon-based application of zero-refractive-index photonic crystals.
High-Q terahertz reconfigurable metamaterials using graphene
Sara Arezoomandan, Berardi Sensale Rodriguez
We propose and discuss high-Q reconfigurable metamaterials based on graphene. The key components of the device are periodic concentric metallic ring resonators with interdigitated fingers, which are placed in-between the rings and provide for the large Q in the metamaterial, as well as several strategically located gaps where active graphene sheets are placed. We can easily adjust the frequency response of the metamaterial by means of varying a couple of parameters, such as the ring dimensions, number of fingers, etc., but also dynamically by means of varying conductivity in graphene.
Novel Materials
icon_mobile_dropdown
What can replace metals in plasmonics and metamaterials? (Conference Presentation)
Large ohmic losses in metal is the main factor impeding the progress in plasmonics and metamaterials. An extensive effort to replace metals as materials of choice, especially in the infrared region of the spectrum with alternative materials, such as high-doped semiconductors, nitrides, or “Phononic” materials is currently under way. In this talk I will offer a critical assessment of how the alternative plasmonic materials stack up against noble metals in the infrared region and show that they face an uphill battle in the quest to replace metals.
Towards sensors and quantum registers using color center in diamond and nanophotonic structures (Conference Presentation)
Vladimir M. Shalaev, Mikhail Y. Shalaginov, Simeon Bogdanov, et al.
Metamaterials and metasurfaces can be seen as a novel approach for constructing practical quantum photonic systems. In this talk, we present our recent advances in controlling single-photon emission from nitrogen-vacancy (NV) color centers in nanodiamonds using CMOS-compatible hyperbolic metamaterials. Further, we discuss how an increased photonic density of states affects the optical readout of the NV center spin-state. These results can be useful for engineering on-chip room-temperature quantum registers.
Mid-IR to THz polaritonics: realizing novel materials for nanophotonics (Conference Presentation)
The field of nanophotonics is based on the ability to confine light to sub-diffractional dimensions. Up until recently, research in this field has been primarily focused on the use of plasmonic metals. However, the high optical losses inherent in such metal-based surface plasmon materials has led to an ever-expanding effort to identify, low-loss alternative materials capable of supporting sub-diffractional confinement. Beyond this, the limited availability of high efficiency optical sources, refractive and compact optics in the mid-infrared to THz spectral regions make nanophotonic advancements imperative. One highly promising alternative are polar dielectric crystals whereby sub-diffraction confinement of light can be achieved through the stimulation of surface phonon polaritons within an all-dielectric, and thus low loss material system. Due to the wide array of high quality crystalline species and varied crystal structures, a wealth of unanticipated optical properties have recently been reported. However, these materials also have some limitations, primarily in the limited spectral bandwidth of operation for any given material. This talk will discuss recent advancements to improve the material lifetime and to induce additional functionality through isotopic enrichment and hybridization of polaritonic modes for realizing low-loss, actively tunable/modulated nanophotonic materials.
Nonlinear Phenomena II
icon_mobile_dropdown
Metamaterial wave phenomena based on nonlinearities (Conference Presentation)
Andrea Alù
In this talk, we will discuss our recent efforts on nonlinearity-based wave interactions in metamaterials, including large isolation and non-reciprocal responses, giant harmonic generation, and nonlinearity-induced topological protection in suitably designed metamaterials. The large wave-matter interactions in metamaterials can be tailored to enhance the typically weak nonlinearities of optical materials to realize new devices and systems with unusual functionalities, of interest in nanophotonics, optical communications and sensing.
Accessing high-order resonances in plasmonic nanostructures
Alessandro Salandrino, Eli D. Symm
The optical excitation of high-order plasmonic resonant modes in nanostructures is important for the enhancement of light-matter interactions at the nanoscale. Due to the fast spatial variation of the electromagnetic field distribution associated with high-order modes, their excitation by conventional optical methods is extremely challenging. Here we describe a novel nonlinear scheme devised to access high-order plasmonic resonances. The proposed method is based on the temporal modulation of the permittivity of the medium surrounding a plasmonic nanoparticle. Analytical results are presented for the case of spherical nanoparticle demonstrating the effectiveness of the proposed method.
Orbital angular momentum of helical necklace beams in colloid-based nonlinear optical metamaterials (Conference Presentation)
Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.
Ultimate limit of nanoplasmonic field enhancement (Conference Presentation)
Greg Sun, Jacob B. Khurgin, Wei-Yi Tsai, et al.
The fact that surface-induced damping rate of surface plasmon polaritons (SPPs) in metal nanoparticles increases with the decrease of particle size is well known. This damping effect introduces additional loss to that of bulk metal and results in smaller enhancement of luminescence. We show that this rate also increases with the degree of the mode confinement, hence damping of the higher order nonradiative SPP modes in spherical particles is greatly enhanced relative to damping of the fundamental (dipole) SPP mode. Since higher order modes are the ones responsible for quenching of luminescence in the vicinity of metal surfaces, the degree of quenching increases resulting in a substantial decrease in the amount of attainable enhancement of the luminescence.
Metasurfaces II
icon_mobile_dropdown
A reconfigurable parity-time symmetric meta-atom for polarization and phase control (Conference Presentation)
Brian Baum, Jennifer Dionne, Hadiseh Alaeian, et al.
Metasurfaces offer exotic optical properties, which often originate from carefully designed material geometries. With locked geometries, these metasurfaces are difficult or impossible to change post-fabrication. Here, we theoretically explore a nano-scale coaxial structure capable of adjustably manipulating the polarization, phase, and spatial distribution of light through the introduction of parity-time (PT) symmetric perturbations. Coaxial waveguides possess degenerate modes, corresponding to different orbital angular momentum (OAM) states. The degeneracy of OAM modes can be lifted through the introduction of any non-zero amount of gain and loss into the structure in a way that matches the azimuthal periodicity of the degenerate mode pair. New hybrid complex conjugate modes are created which lose their pure OAM nature and are either amplifying or lossy. We confirm this behavior using both a Hamiltonian formulation and degenerate perturbation theory, and propose this selective excitation and absorption scheme as a new method of filtering for mode division multiplexing in on-chip nanophotonic systems. In addition to the creation of new hybrid modes, we show that these PT-symmetric perturbations in coaxial apertures are capable of converting incident circularly polarized light into linearly polarized light with unity efficiency. Further, due to the localization of field intensity within the gain sections, it is possible to rotate linear polarization and induce up to a pi-phase shift. We describe how our PT-symmetric coaxial aperture could function as a reconfigurable meta-atom for phase, amplitude, and polarization controlled meta-surfaces, and discuss routes toward unity-efficiency, reconfigurable holography.
Poster Session
icon_mobile_dropdown
Magnetically controllable circulator based on photonic crystal unidirectional waveguide consisting of metamaterials
Unidirectional edge modes are achieved in gyromagnetic photonic crystals. The physical reason is attributed to magnetic resonance and broken time-reversal symmetry under external magnetic fields. These edge modes propagate only along a single direction, while the backward modes are completely suppressed. The unidirectional transmittance is nearly 100% and hardly affected by perfect electric conductor (PEC) defect. However, a PEC defect has sensitive influence on both the phase delay and pattern distribution of unidirectional edge modes. These properties hold promise in designing various unidirectional devices. Here we design a three port circulator with high transmission contrast and magnetic controllability simultaneously.
Controlling the evanescent waves using metamaterials
In this paper we discuss the role of evanescent waves in nanophotonic devices, especially in metamaterials. We discuss how metamaterial cladding increases the power confinement in waveguides by increasing the momentum of evanescent waves. The momentum of evanescent waves is controlled in such a fashion that condition of total internal reflection is not disturbed. This becomes possible by making the cladding anisotropic. Anisotropic cladding gives the facility to control the parallel and perpendicular components of wave vector individually. We analyze the efficiency of this technique in case of waveguides. We have also discussed the advantages of collecting evanescent waves for imaging sub wavelength objects.
Inverse-designed all-dielectric optical diode
F. Callewaert, K. Aydin
The objective-first inverse-design algorithm is used to design an ultra-compact all-dielectric optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A broadband optical diode is reported with a large ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices.
Propagation properties of silver nanowires embedded in a substrate with gain
Joaquim Lima, Jost Adam, Davi Rego, et al.
The transmittance, reflectance and absorption of silver nanowires metamaterial embedded into a semiconductor matrix with optical gain are numerically investigated. Metamaterials may suffer from appreciable dissipative losses which are inherent for all plasmonic structures. The losses can significantly be reduced by introducing optical gain in the dielectric matrix by placing atomic or molecular impurities which are pumped by an external light source to create a population inversion. We numerically analyzed the optical properties when the semiconductor host material represents a gain medium. We calculate the transmittance, reflectance and absorption at normal incidence in the visible and near infrared ranges. We observed a peculiar behavior of their optical coefficients that can be explained by observing the field redistribution on the metamaterial.
Universality and scaling in metamaterials
It has been demonstrated by many theoretical and experimentals works that Mie resonances are at the heart of the effective properties of dielectric metamaterials. These resonances indeed allow for the onset of tailorable macroscopic magnetic properties. They were shown to provide a convenient way to study the transition between photonic crystals and metamaterials. In the present work, we show that the band structure linked to theses resonances is largely scale invariant and also, to some extend, robust with regard to disorder. These results do not rely heavily on a specific type of wave, suggesting that the same kind of results can be obtained for acoustic or gravity waves.
Progress towards omnidirectional transformation optics with lenses
Johannes Courtial, Stephen Oxburgh, Euan N. Cowie, et al.
We study, theoretically, omni-directional Euclidean transformation-optics (TO) devices comprising planar, light-ray-direction changing, imaging, interfaces. We initially studied such devices in the case when the interfaces are homogeneous, showing that very general transformations between physical and electromagnetic space are possible. We are now studying the case of inhomogeneous interfaces. This case is more complex to analyse, but the inhomogeneous interfaces include ideal thin lenses, which gives rise to the hope that it might be possible to construct practical omni-directional TO devices from lenses alone. Here we report on our progress in this direction.
Formation of terahertz beams produced by artificial dielectric periodical structures
This paper presents an investigation of terajets formation by dielectric periodic structure at terahertz frequencies in effective medium regime (photonic metamaterial). The dispersions of effective permittivity for three periodic structures formed by different types of plastics (ABS, PLA, Crystal) were analytically obtained for both regimes. Numerical simulation of this structure was performed by using COMSOL Multiphysics. The terajet formation was numerically shown.