Proceedings Volume 10555

Emerging Liquid Crystal Technologies XIII

cover
Proceedings Volume 10555

Emerging Liquid Crystal Technologies XIII

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 2 May 2018
Contents: 11 Sessions, 27 Papers, 0 Presentations
Conference: SPIE OPTO 2018
Volume Number: 10555

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10555
  • Chiral, Nanostructured Materials, and Applications
  • Lasers and Diffractive Optical Elements I
  • New Materials and Effects
  • Lasers and Diffractive Optical Elements II
  • Polymers and LC Composites
  • Spatial Light Modulators and Optical Filters
  • Photoresponsive, Photo-Patterning, and Photoalignment
  • 3D and AR/VR Displays
  • Emerging Technologies and Displays
  • Poster Session
Front Matter: Volume 10555
icon_mobile_dropdown
Front Matter: Volume 10555
This PDF file contains the front matter associated with SPIE Proceedings Volume 10555, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Chiral, Nanostructured Materials, and Applications
icon_mobile_dropdown
Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices
Fumito Araoka, Khoa V. Le, Shuji Fujii, et al.
Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.
Lasers and Diffractive Optical Elements I
icon_mobile_dropdown
Holographic zoom system based on spatial light modulator and liquid device
Di Wang, Lei Li, Su-Juan Liu, et al.
In this paper, two holographic zoom systems are proposed based on the programmability of spatial light modulator (SLM) and zoom characteristics of liquid lens. An active optical zoom system is proposed in which the zoom module is composed of a liquid lens and an SLM. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. Then a color holographic zoom system based on a liquid lens is proposed. The system processes the color separation of the original object for red, green, and blue components and generated three holograms respectively. A new hologram with specific reconstructed distance can be generated by combing the hologram of the digital lens with the hologram of the image. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of the reconstructed image.
Wide-field-of-view nanoscale Bragg liquid crystal polarization gratings
Here, we demonstrate a liquid crystal (LC) polymer Bragg polarization grating (PG) with large angular band- width and high efficiency in transmission-mode for 532 nm wavelength and 400 nm period. The field-of-view (FOV ) is increased significantly while preserving high diffraction efficiency by realizing a monolithic grating comprising two different slants. Using rigorous coupled-wave analysis simulation, we identified a structure with 48° FOV and 70% average first-order efficiency. We then experimentally fabricated and characterized the grating with a photo-aligned LC polymer network, also known as reactive mesogens. We measured 40° FOV and nearly 80% average diffraction efficiency. With this broadened and fairly uniform angular response, this wide FOV Bragg PG is a compelling option for large deflection-angle applications, including near-eye display in augmented reality systems, waveguide based illumination, and beam steering.
New Materials and Effects
icon_mobile_dropdown
Numerical calculation of Kossel diagrams of cholesteric blue phases
Jun-ichi Fukuda, Yasushi Okumura, Hirotsugu Kikuchi
Kossel diagrams visualize the directions of strong Bragg reflections from a specimen with periodic ordering. They have played a pivotal role in the determination of the symmetry of cholesteric blue phases, and in the investigation of their structural changes under an electric field. In this work, we present direct numerical calculations of the Kossel diagrams of cholesteric blue phases by solving the Maxwell equations for the transmission and reflection of light incident upon a finite-thickness blue phase cell. Calculated Kossel diagrams are in good agreement with what is expected as a result of Bragg reflections, although some differences are present.
Low-voltage tunable color in full visible region using ferroelectric liquid-crystal-doped cholesteric liquid-crystal smart materials
Jia-De Lin, Jyun-Wei Lin, Chia-Rong Lee
Electrical tuning of photonic bandgap (PBG) of cholesteric liquid crystal (CLC) without deformation within the entire visible region at low voltages is not easy to achieve. This study demonstrates low-voltage-tunable PBG in full visible region with less deformation of the PBG based on smart materials of ferroelectric liquid crystal doped CLC (FLC-CLC) integrating with electrothermal film heaters. Experimental results show that the reflective color of the FLC-CLC can be low-voltage-tuned through entire visible region. The induced temperature change is induced by electrically heating the electrothermal film heaters at low voltages at near the smectic-CLC transition temperature. Coaxial electrospinning can be used to develop smart fibrous devices with FLC/CLC-core and polymer-shell which color is tunable in full visible region at low voltages.
Three-dimensional x-ray crystal structure analysis of solution-processed oriented thin film utilizing liquid-crystalline phthalocyanine
Masashi Ohmori, Mitsuhiro Nakatani, Masaya Kurokawa, et al.
Molecular alignment control of non-peripherally hexyl-substituted phthalocyanine (C6PcH2) in thin films has been investigated. Planar alignment of C6PcH2 molecules in the thin film was induced by bar-coating, and homeotropic alignment was induced by the thermal annealing of C6PcH2 thin film covered with a poly(vinylphenol) layer. The threedimensional molecular packing structure in the uniaxially planar oriented thin film was clarified by the grazing incidence wide-angle X-ray scattering (GIWAXS) technique with sample rotation. The quality of the molecularly oriented thin film was discussed based on the X-ray rocking curve measurement and simulation utilizing the single-crystal structure of C6PcH2. The molecular alignment in the homeotropically oriented thin film was also clarified by the temperature controlled GIWAXS measurement. The origin of inducing homeotropic alignment in the thin film was discussed based on the molecular alignment in the LC phase.
Optical filter based on Fabry-Perot structure using a colloidal suspension of goethite ([alpha]-FeOOH) nanorods as electro-optic material
Samir Abbas, Laurent Dupont, Ivan Dozov, et al.
We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.
Lasers and Diffractive Optical Elements II
icon_mobile_dropdown
Self-addressed diffractive lens schemes for the characterization of LCoS displays
Haolin Zhang, Angel Lizana, Claudio Iemmi, et al.
We proposed a self-calibration method to calibrate both the phase-voltage look-up table and the screen phase distribution of Liquid Crystal on Silicon (LCoS) displays by implementing different lens configurations on the studied device within a same optical scheme. On the one hand, the phase-voltage relation is determined from interferometric measurements, which are obtained by addressing split-lens phase distributions on the LCoS display. On the other hand, the surface profile is retrieved by self-addressing a diffractive micro-lens array to the LCoS display, in a way that we configure a Shack-Hartmann wavefront sensor that self-determines the screen spatial variations. Moreover, both the phase-voltage response and the surface phase inhomogeneity of the LCoS are measured within the same experimental set-up, without the necessity of further adjustments. Experimental results prove the usefulness of the above-mentioned technique for LCoS displays characterization.
Polymers and LC Composites
icon_mobile_dropdown
Polymerization speed and diffractive experiments in polymer network LC test cells
Larissa Braun, Zhen Gong, Atefeh Habibpourmoghadam, et al.
Polymer-network liquid crystals (LCs), where the response properties of a LC can be enhanced by the presence of a porous polymer network, are investigated. In the reported experiments, liquid crystals were doped with a small amount (< 10%) of photo-curable acrylate monomers. Samples with surface grafted photoinitiators, dissolvable photoinitiators, and samples with both kinds of photoinitiators were prepared. Both conventional (planar electrodes) and diffractive (interdigitated electrodes) test cells were used. These samples were exposed with a UV light source and changes of their capacitance were investigated with an LCR meter during exposure. Due to the presence of the in-situ generated polymer network, the electro-optic response properties of photo cured samples were enhanced. For example, their continuous phase modulation properties led to more localized responses in samples with interdigitated electrodes, which caused suppression of selected diffraction orders in the diffraction patterns recorded in polymer network LC samples. Moreover, capacitance changes were investigated during photopolymerization of a blue phase LC.
Advancing flexible volatile compound sensors using liquid crystals encapsulated in polymer fibers
Catherine G. Reyes, Jan P. F. Lagerwall
Until recently, organic vapor sensors using liquid crystals (LCs) have employed rigid glass substrates for confining the LC, and bulky equipment for vapor detection. Previously, we demonstrated that coaxially electrospinning nematic LC within the core of polymer fibers provides an alternative and improved form factor for confinement. This enables ppm level sensitivity to harmful industrial organics, such as toluene, while giving the flexibility of textile-like sheets (imparted by polymer encapsulation). Moreover, toluene vapor responses of the LC-core fiber mats were visible macroscopically with the naked eye depending on the morphology of the fibers produced, and whether they were oriented in specific geometries (aligned, or random). We identified two types of responses: one corresponds to the LC transition from nematic to isotropic, and the other we suggest is due to an anchoring change at the LC-polymer interface that influences the alignment. While we need to study the presence that defects can have in more detail, we noted that fiber mat thickness is crucial in attempting to understand how and why we are able to visualize two responses in aligned LC-fiber mats. Ultimately, we noted that the response of the polymer sheath itself (softening) to organic vapor exposure affects the liquid crystal confinement in the core. From the microscopic point of view, this will influence the threshold concentration that fibers in a mat will overall respond to. In this paper we will discuss three findings the morphologies enabling LC-core fiber mat response to vapor seen both micro- and macroscopically, how thickness of the fiber mat can play a role in the visualization of the responses, and the effect that the polymer structure has in the mat’s sensitivity threshold.
Spatial Light Modulators and Optical Filters
icon_mobile_dropdown
Recent advances in liquid-crystal THz filters
Chia-Yi Huang, Wei-Yuan Chen, Jing-Ya Chiu, et al.
Liquid crystal polymer (LCP) films are rolled into hollow cylinders. The hollow cylinders are measured by a terahertz spectrometer. Experimental results reveal that the transmittance spectra of the hollow cylinders have peaks at specific frequencies due to Fabry-Pérot resonance, and the frequencies of the peaks can be tuned by changing the thicknesses and rolled layers of the LCP films. Therefore, the rolled LCP films can be used to develop terahertz filters.
Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix
T. Nose, Y. Watanabe, A. Kon, et al.
Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.
Photoresponsive, Photo-Patterning, and Photoalignment
icon_mobile_dropdown
Electric-field effects in the twist-bend nematic phase
Claire Meyer, Ivan Dozov, Patrick Davidson, et al.
In the recently discovered Twist-Bend Nematic (NTB) phase, the nematic director is spontaneously distorted and twisted along a conical helix with an extremely short pitch, ~10 nm. We have investigated the behavior of the NTB phase subject to an electric-field. We show that, due to the periodic NTB structure, the electro-optic effects are not nematic-like but are close analogs to those in the smectic and cholesteric phases. In particular, we have studied the fast (sub-microsecond) flexoelectrically-induced rotation of the optic axis, which is similar to the electroclinic effect in the SmA* phase and the flexoelectric response of short-pitch cholesterics. We discuss the possible applications of the fast NTB electro-optic effects.
3D and AR/VR Displays
icon_mobile_dropdown
Advanced multiplanar volumetric 3D display
K. Osmanis, G. Valters, R. Zabels, et al.
In this work a detailed analysis of technologies and methods required for a construction and operation of passive multiplane volumetric 3D display based on the arrangement of electrically controllable optical diffuser elements has been provided. Current methods of displaying 3D images have been compared. Challenges and solutions of representing realistic looking 3D content with associated physical depth cues in regards to multi-plane approach have been highlighted. The main focus has been devoted to consideration of improving user experience when viewing and interacting with the 3D content on a multi-plane volumetric display by utilizing various task-specific computational methods in the data processing pipeline.
Display technologies for augmented reality
With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.
Liquid crystal true 3D displays for augmented reality applications
Yan Li, Shuxin Liu, Pengcheng Zhou, et al.
Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.
Emerging Technologies and Displays
icon_mobile_dropdown
Thickness dependence of forming single crystal by liquid-crystalline blue phase on chemically patterned surface
Xiao Li, Jose A. Martinez-Gonzalez, Juan J. de Pablo, et al.
Topological defects of blue-phase liquid crystals (BPLCs) can be self-assembled into three-dimensional cubic crystalline structures, representing unique ordered states of matter among other liquid crystals. In a recent study, we presented the preparation of stable, macroscopic single-crystal blue phase materials by using chemically-patterned surfaces with binary anchoring and the appropriate geometry to favor a desired crystallographic orientation of the BPLC. Here we study the thickness dependence for chemically patterned surface for the crystal growth of the blue-phase II –which is characterized by a simple cubic crystalline structure, under a thermally controlled process. The hybrid cell used in our work to direct the self-assembly of the BP LCs has a top surface that provides uniform homeotropic anchoring, and a bottom surface with chemical patterns consisting of a stripe array of alternative planar and homeotropic anchoring. There is a spacer in between the two substrates to vary the cell thickness. Under such a process we achieve single crystals of blue-phase II with a [100]-lattice orientation (BPII[100]) that start to nuclei and grow from the pattern surface and propagate through the cell. By changing the cell thickness, we analyze the morphology difference of crystalline BPII[100] on the pattern surface.
High-reflective colorful films fabricated by all-solid multi-layer cholesteric structures
Y. Li, D. Luo
We demonstrate all-solid-state film with high-reflectivity based on cholesteric template. The adhesive (NOA81) is both filler and an adhesive, which can be avoids interfacial losses. The reflected right- and left-circularly polarized light has been developed by roll-to-roll method, and the reflectance of the films is more than 78%. Here, the all-solid film was used in distribute feedback laser with dye-doped. In addition, this films also used in include flexible reflective display, color pixels in digital photographs, printing and colored cladding of variety of objects.
Smart window using a thermally and optically switchable liquid crystal cell
Seung-Won Oh, Sang-Hyeok Kim, Jong-Min Baek, et al.
Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.
In-plane only retardation switching by certain type of smectic liquid crystal panels
A certain type of smectic C phase liquid crystal material panel shows in-plane only retardation switching during its electric field applied driving. This paper explains some chronological approach how such an interesting phenomenon was found and how the in-plane only retardation switching was verified.
Cholesteric metronomes with flexoelectrically programmable amplitude
We experimentally demonstrate fast flexoelectro-optic switching in a liquid crystal cell containing bimesogen-doped and polymer-stabilized cholesteric. The device exhibits a response time of less than 0.7 ms and with low hysteresis and color dispersion which is suitable for potential applications including field-sequential color displays.
Poster Session
icon_mobile_dropdown
Method of preparing a tunable-focus liquid-crystal (LC) lens
Xiaolong Li, Zuowei Zhou, Hongwen Ren
A liquid crystal (LC) lens is prepared by controlling the alignment of a LC using a homogeneous polyimide (PI) layer and a homeotropic PI layer. The rubbed homogeneous PI layer has a concave surface and the homeotropic PI layer is flat. The LC sandwiched between the two PI layers obtains a hybrid alignment which has the largest gradient of refractive index (GRIN) distribution. The LC layer exhibits a lens character because of its convex shape. Since the effective refractive index of the LC is larger than that of the homogeneous PI, the LC lens can focus a light with the shortest focal length in the voltage-off state. By applying an external voltage, the LC molecules can be reoriented along the electric field. As a result, the focal length of the LC lens is reduced. The focal length of the LC lens can be tuned from ~30 to ~120 μm when the voltage is changed from 0 to 7 Vrms. This LC lens has the advantages of no threshold, low operating voltage, and simple fabrication.
Electric field switched surface topography of fingerprint liquid-crystal network polymer coating
Wei Feng, Danqing Liu, Dirk J. Broer
Coatings with switchable surface topographies will open pathways to completely new coating functions. Very recently we use an AC electric field to actuate the surface topographical deformation of a fingerprint liquid crystal network. In this article, we present the leading parameters that influence the surface modulation amplitude, including cross-linking density, glass transition temperature Tg, the polarizability of liquid crystal monomers and fingerprint pitch. This investigation will help to optimize the modulation performance of the LCN coating to gain better integration into practical devices.
Control of haze value using electrically switchable liquid crystal phase grating devices
We introduce an electrically switchable two-dimensional liquid crystal (LC) phase grating device for window display applications. The device consists of the top and bottom substrates with crossed interdigitated electrodes and vertically aligned LCs sandwiched between the two substrates. The device, switchable between the transparent and translucent states by applying an electric field, can provide high haze by the strong diffraction effect with little dependence on the azimuth angle owing to a large spatial phase difference. This device exhibits outstanding features, such as a low operating voltage, high transmittance, and wide viewing angle in the transparent state and a high haze in the translucent state. In addition, the LC device can provide sub-millisecond switching between the transparent and translucent states with the use of an overdrive scheme and a vertical trigger pulse.
Electromagnetic response of dielectric nanostructures in liquid crystals
S. Amanaganti, D. R. Chowdhury, M. Ravnik, et al.
Sub-wavelength periodic metallic nanostructures give rise to very interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such metallic structures result in high dissipative losses and hence dielectric nanostructures are being considered increasingly to be an efficient alternative to plasmonic materials. High refractive index (RI) dielectric nanostructures exhibit magnetic and electric resonances simultaneously giving rise to interesting properties like perfect magnetic mirrors, etc. In the present work, we study light-matter interaction of cubic dielectric structures made of very high refractive index material Te in air. We observe a distinct band-like structure in both transmission and reflection spectra resulting from the interaction between magnetic and electric dipolar modes. FDTD simulations using CST software are performed to analyse the different modes excited at the band frequencies. The medium when replaced with liquid crystal gives rise to asymmetry in the band structure emphasizing one of the dominant magnetic modes at resonance frequencies. This will help in achieving a greater control on the excitation of the predominant magnetic dipolar modes at resonance frequencies with applications as perfect magnetic mirrors.
Chirality transfer technique between liquid crystal microdroplets using microfluidic systems
Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.