Proceedings Volume 10456

Nanophotonics Australasia 2017

James W. M. Chon, Baohua Jia
cover
Proceedings Volume 10456

Nanophotonics Australasia 2017

James W. M. Chon, Baohua Jia
Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 15 January 2018
Contents: 21 Sessions, 54 Papers, 0 Presentations
Conference: SPIE Nanophotonics Australasia 2017
Volume Number: 10456

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10456
  • Micro-Resonator / Frequency Comb I
  • Biophotonics I
  • Micro-Resonator / Frequency Comb II
  • Quantum Photonics on Chips I
  • Metamaterials, Surfaces, and Plasmonics IV: Plasmonics
  • Fabrication II
  • Biophotonics III: Plasmonic Nanoparticles and Single-Molecule Detection
  • Fabrication III
  • Bioimaging and THz
  • Micro and Nano Devices
  • Special Session on Organic Optoelectronics and Photonics I: Laser Fabrication
  • Biophotonics IV
  • Special Session on Organic Optoelectronics and Photonics II
  • Nanophotonic Materials V: Solar Cells and 2D Materials
  • Microfluidics II: Optical Trapping
  • Photonics IV
  • Nanophotonic Materials VI: Luminescent, Optical Materials
  • Biophotonics V: Fibre Sensors and Plasmonic Nanoparticles
  • Novel Topics in Photonics II
  • Poster Session
Front Matter: Volume 10456
icon_mobile_dropdown
Front Matter: Volume 10456
This PDF file contains the front matter associated with SPIE Proceedings Volume 10456, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Micro-Resonator / Frequency Comb I
icon_mobile_dropdown
Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing
Xingyuan Xu, Jiayang Wu, Mehrdad Shoeiby, et al.
An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines’ power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.
Biophotonics I
icon_mobile_dropdown
Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages
Finite-difference time-domain (FDTD) computational phantoms aid the analysis of THz radiation interaction with human skin. The presented computational phantoms have accurate anatomical layering and electromagnetic properties. A novel “large sheet” simulation technique is used allowing for a realistic representation of lateral absorption and reflection of in-vivo measurements. Simulations carried out to date have indicated that hair follicles act as THz propagation channels and confirms the possible role of melanin, both in nevi and skin pigmentation, to act as a significant absorber of THz radiation. A novel freezing technique has promise in increasing the depth of skin penetration of THz radiation to aid diagnostic imaging.
Micro-Resonator / Frequency Comb II
icon_mobile_dropdown
Spectrum reshaping of micro-ring resonator via an integrated Fabry-Perot cavity
We investigate the enhancement in the filtering quality (Q) factor of an integrated micro-ring resonator (MRR) by embedding it in an integrated Fabry-Perot (FP) cavity formed by cascaded Sagnac loop reflectors (SLRs). By using coherent interference within the FP cavity to reshape the transmission spectrum of the MRR, both the Q factor and the extinction ratio (ER) can be greatly improved. The device is theoretically analyzed, and practically fabricated on a silicon-on-insulator (SOI) platform. Experimental results show that up to 11-times improvement in Q factor and an 8-dB increase in ER can be achieved via our proposed method. The impact of varying structural parameters on the device performance is also investigated and verified.
Quantum Photonics on Chips I
icon_mobile_dropdown
Integrated generation of complex optical quantum states and their coherent control
Piotr Roztocki, Michael Kues, Christian Reimer, et al.
Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced frequency modes) based on high-Q nonlinear microring resonators can provide solutions for such scalable complex quantum state sources. In particular, by using spontaneous four-wave mixing within the resonators, we demonstrate the generation of bi- and multi-photon entangled qubit states over a broad comb of channels spanning the S, C, and L telecommunications bands, and control these states coherently to perform quantum interference measurements and state tomography. Furthermore, we demonstrate the on-chip generation of entangled high-dimensional (quDit) states, where the photons are created in a coherent superposition of multiple pure frequency modes. Specifically, we confirm the realization of a quantum system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.
Metamaterials, Surfaces, and Plasmonics IV: Plasmonics
icon_mobile_dropdown
Manipulation of Bloch surface waves: from subwavelength focusing to nondiffracting beam
We present a different type of electromagnetic surface wave than a surface plasmon polariton (SPP), called Bloch surface wave (BSW). BSWs are sustained by dielectric multilayers, and therefore they do not suffer from dissipation. Their propagation length is unbeatably long, e.g., over several millimeters. Thanks to this feature, larger integrations of 2D photonic chips are realizable. To do this, 2D optical components and corresponding techniques are necessary to manipulate in-plane propagation of surface waves. We overview recent progresses of the BSW research on manipulation techniques and developed components. Our study will provide a good guideline of the BSW components for users.
All-dielectric metasurface for wavefront control at terahertz frequencies
Raghu Dharmavarapu, Soon Hock Ng, Shanti Bhattacharya, et al.
Recently, metasurfaces have gained popularity due to their ability to offer a spatially varying phase response, low intrinsic losses and high transmittance. Here, we demonstrate numerically and experimentally a silicon meta-surface at THz frequencies that converts a Gaussian beam into a Vortex beam independent of the polarization of the incident beam. The metasurface consists of an array of sub-wavelength silicon cross resonators made of a high refractive index material on substrates such as sapphire and CaF2 that are transparent at IR-THz spectral range. With these substrates, it is possible to create phase elements for a specific spectral range including at the molecular finger printing around 10 μm as well as at longer THz wavelengths where secondary molecular structures can be revealed. This device offers high transmittance and a phase coverage of 0 to 2π. The transmittance phase is tuned by varying the dimensions of the meta-atoms. To demonstrate wavefront engineering, we used a discretized spiraling phase profile to convert the incident Gaussian beam to vortex beam. To realize this, we divided the metasurface surface into eight angular sectors and chose eight different dimensions for the crosses providing successive phase shifts spaced by π/4 radians for each of these sectors. Photolithography and reactive ion etching (RIE) were used to fabricate these silicon crosses as the dimensions of these cylinders range up to few hundreds of micrometers. Large 1-cm-diameter optical elements were successfully fabricated and characterised by optical profilometry.
Fabrication II
icon_mobile_dropdown
Investigation of the influence of the proximity effect and randomness on a photolithographically fabricated photonic crystal nanobeam cavity
Tomohiro Tetsumoto, Hajime Kumazaki, Rammaru Ishida, et al.
Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.
Surface smoothening of the inherent roughness of micro-lenses fabricated with 2-photon lithography
Helmut Schift, Robert Kirchner, Nachiappan Chidambaram, et al.
Two-photon polymerization by direct laser writing enables to write refractive micro-optical elements with sub-μm precision. The trajectories and layering during the direct writing process often result in roughness in the range of the writing increment, which has adverse effects for optical applications. Instead of increasing overlap between adjacent voxels, roughness in the range of 100 nm can be smoothed out by post-processing. For this a method known as TASTE was developed, which allows polishing of surfaces without changing the structural details or the overall shape. It works particularly well with thermoplastic polymers and enables sub-10 nm roughness. The optical quality was confirmed for an array with several 100 microlenses.
Laser fabrication of perfect absorbers
V. Mizeikis, I. Faniayeu
We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.
Single nano-digit and closed-loop scanning probe lithography for manufacturing of electronic and optical nanodevices
Ivo W. Rangelow, Claudia Lenk , Martin Hofmann , et al.
Next-generation electronic and optical devices demand high-resolution patterning techniques and high-throughput fabrication. Thereby Field-Emission Scanning Probe Lithography (FE-SPL) is a direct writing method that provides high resolution, excellent overlay alignment accuracy and high fidelity nanopatterns. As a demonstration of the patterning technology, single-electron transistors as well as split ring electromagnetic resonators are fabricated through a combination of FE-SPL and plasma etching at cryogenic temperatures.
Biophotonics III: Plasmonic Nanoparticles and Single-Molecule Detection
icon_mobile_dropdown
Study of interaction of GNR with glioblastoma cells
Arti Hole, P. E. Cardoso-Avila, Sangita Sridharan, et al.
Radiation resistance is one of the major causes of recurrence and failure of radiotherapy. Different methods have been used to increase the efficacy of radiation therapy and at the same time restrict the radiation resistivity. From last few years nanoparticles have played a key role in the enhancement of radiosensitization. The densely packed nanoparticles can selectively scatter or absorb the high radiations, which allow better targeting of cellular components within the tumor hence resulting in increased radiation damage to the cancer cells. Glioblastoma multiforme (GBM) is one of the highly radioresistant brain cancer. Current treatment methods are surgical resection followed by concurrent chemo and radiation therapy. In this study we have used in-house engineered gold nano rodes (GNR) and analyzed their effect on U-87MG cell lines. MTT assay was employed to determine the cytotoxic concentration of the nanoparticles. Raman spectroscopy was used to analyze the effect of gold nanoparticles on glioma cells, which was followed by transmission electron microscopic examinations to visualize their cellular penetration. Our data shows that GNR were able to penetrate the cells and induce cytotoxicity at the concentration of 198 μM as determined by MTT assay at 24 post GNP treatment. Additionally, we show that Raman spectroscopy, could classify spectra between untreated and cells treated with nanoparticles. Taken together, this study shows GNR penetration and cytotoxicity in glioma cells thereby providing a rationale to use them in cancer therapeutics. Future studies will be carried out to study the biological activity of the formulation as a radiosensitizer in GBM.
Fabrication III
icon_mobile_dropdown
Volume gratings and welding of glass/plastic by femtosecond laser direct writing
Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.
Bioimaging and THz
icon_mobile_dropdown
Development of dielectrophoresis MEMS device for PC12 cell patterning to elucidate nerve-network generation
Eiji Nakamachi, Hirotaka Koga, Yusuke Morita, et al.
We developed a PC12 cell trapping and patterning device by combining the dielectrophoresis (DEP) methodology and the micro electro mechanical systems (MEMS) technology for time-lapse observation of morphological change of nerve network to elucidate the generation mechanism of neural network. We succeeded a neural network generation, which consisted of cell body, axon and dendrites by using tetragonal and hexagonal cell patterning. Further, the time laps observations was carried out to evaluate the axonal extension rate. The axon extended in the channel and reached to the target cell body. We found that the shorter the PC12 cell distance, the less the axonal connection time in both tetragonal and hexagonal structures. After 48 hours culture, a maximum success rate of network formation was 85% in the case of 40 μm distance tetragonal structure.
Raman spectroscopic studies on exfoliated cells of oral and cervix
Arti Hole, Aditi Sahu, Rubina Shaikh, et al.
Visual inspection followed by biopsy is the standard procedure for cancer diagnosis. Due to invasive nature of the current diagnostic methods, patients are often non-compliant. Hence, it is necessary to explore less invasive and rapid methods for early detection. Exfoliative cytology is a simple, rapid, and less invasive technique. It is thus well accepted by patients and is suitable for routine applications in population screening programs. Raman spectroscopy (RS) has been increasingly explored for disease diagnosis in the recent past. In vivo RS has previously shown promise in management of both oral and cervix cancers. In vivo applications require on-site instrumentation and stringent experimental conditions. Hence, RS of less invasive samples like exfoliated cells has been explored, as this facilitates collection at multiple screening centers followed by analysis at a centralized facility. In the present study, efficacy of Raman spectroscopy in classification of 15 normal and 29 abnormal oral exfoliated cells specimens and 28 normal and 38 abnormal cervix specimens were explored. Spectra were acquired by Raman microprobe (HE 785, Horiba-Jobin-Yvon, France) from several areas to span the pellet. Spectral acquisition parameters were: microscopic objective: 40X, power: 40 mW, acquisition time: 15 s and average: 3. PCA and PC-LDA of pre-processed spectra was carried out on a 4-model system of normal and tumor of both cervix and oral specimens. Leave-one-out-cross-validation findings indicate ~73 % correct classification. Findings suggest RS of exfoliated cells may serve as a patient-friendly, non-invasive, rapid and objective method for management of cervix and oral cancers.
Micro and Nano Devices
icon_mobile_dropdown
Stacking metal nano-patterns and fabrication of moth-eye structure
Nanoimprint lithography (NIL) can be used as a tool for three-dimensional nanoscale fabrication. In particular, complex metal pattern structures in polymer material are demanded as plasmonic effect devices and metamaterials. To fabricate of metallic color filter, we used silver ink and NIL techniques. Metallic color filter was composed of stacking of nanoscale silver disc patterns and polymer layers, thus, controlling of polymer layer thickness is necessary. To control of thickness of polymer layer, we used spin-coating of UV-curable polymer and NIL. As a result, ten stacking layers with 1000 nm layer thickness was obtained and red color was observed. Ultraviolet nanoimprint lithography (UV-NIL) is the most effective technique for mass fabrication of antireflection structure (ARS) films. For the use of ARS films in mobile phones and tablet PCs, which are touch-screen devices, it is important to protect the films from fingerprints and dust. In addition, as the nanoscale ARS that is touched by the hand is fragile, it is very important to obtain a high abrasion resistance. To solve these problems, a UV-curable epoxy resin has been developed that exhibits antifouling properties and high hardness. The high abrasion resistance ARS films are shown to withstand a load of 250 g/cm2 in the steel wool scratch test, and the reflectance is less than 0.4%.
Special Session on Organic Optoelectronics and Photonics I: Laser Fabrication
icon_mobile_dropdown
Development of functional materials by using ultrafast laser pulses
The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.
Biophotonics IV
icon_mobile_dropdown
The participation of singlet oxygen in a photocitotoxicity of extract from amazon plant to cancer cells
Anna V. Tcibulnikova, Igor A. Degterev , Valery V. Bryukhanov, et al.
We have been searching for new photosensitizers (PS) for photodynamic therapy (PDT) of cancer based on extracts from Amazonian plants since 2009. In this paper, we demonstrate that, under certain conditions, the extract from fruits of the Amazonian palm Euterpe oleraceae (popular name Açaí) can serve as a PS for PDT treatment of murine breast cancer cells (4T1 cell line). We have been first to show directly that the photodynamic effect of plant PS is due to singlet oxygen.
Special Session on Organic Optoelectronics and Photonics II
icon_mobile_dropdown
SMART design to control over conformation and molecular packing in blue luminescent oligofluorenes
Meng-Na Yu, Chang-Jin Ou, Bin Liu, et al.
The uncertainty evolution of conformation and molecular packing from solution to film is key challenge for the repeatability of procedures in organic optoelectronics. Herein, we observed the noncovalent force at the bulky groups to decode the supramolecular steric hindrance (SSH) effect and to propose synergistically molecular attractor-repulsor theory (SMART). The fine difference between ideal and real bulks were described and the SSH effect have been proved by two comparable stat-of-the-art models. The SMART design guide us to discover blue oligo/polydiarylfluorenes with beta phase as well as nanosheets with the paradigm of Interdigital Lipid Bilayer-like (ILB) mode. SMART address one kind of AR molecules with potential controllable behaviors. The design of bulk-withdraw and bulk-rich will exhibit the unreplaceable role in morphology-directed design that is just like the role of donor-acceptor molecular design of organic polymer semiconductors.
Nanophotonic Materials V: Solar Cells and 2D Materials
icon_mobile_dropdown
Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes
Ladan Lotfi, Afshin Farahbakhsh II, Sina Aghili
Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.
Microfluidics II: Optical Trapping
icon_mobile_dropdown
Rapid microfluidic mixing and liquid jets for studying biomolecular chemical dynamics
Daniel Langley, Brian Abbey
X-ray Free-Electron Lasers (XFELs) offer a unique opportunity to study the structural dynamics of proteins on a femtosecond time-scale. To realize the full potential of XFEL sources for studying time-resolved biomolecular processes however, requires the optimization and development of devices that can both act as a trigger and a delivery mechanism for the system of interest. Here we present numerical simulations and actual devices exploring the conditions required for the development of successful mixing and injection devices for tracking the molecular dynamics of proteins in solution on micro to nanosecond timescales using XFELs. The mechanism for combining reagents employs a threefold combination of pico-liter volumes, lamination and serpentine mixing. Focusing and delivering the sample in solution is achieved using the Gas Dynamic Virtual Nozzle (GDVN), which was specifically developed to produce a micrometer diameter, in-vacuum liquid jet. We explore the influence of parameters such as flow rate and gas pressure on the mixing time and jet stability, and explore the formation of rapid homogeneously mixed jets for ‘mix-and-inject’ liquid scattering experiments at Synchrotron and XFEL facilities.
Photonics IV
icon_mobile_dropdown
Photonic ring resonator notch filters for astronomical OH suppression
S. Kuhlmann, P. Liu, S. C. Ellis, et al.
Photonic ring resonators used as wavelength notch filters are a promising novel solution to enable astronomical instruments to remove the signal from atmospheric OH emission in the near-infrared wavelength range. We derive design requirements from theory and finite difference time domain simulations. We find rings with radii less than 10 microns provide an adequate free spectral range for silicon nitride abd less than 3 microns for silicon. One challenge for this application is the requirement for many rings in series to suppress particular wavelengths within 0.2nm. We report progress in fabricating both silicon and silicon nitride rings for OH suppression.
Application of dot-matrix illumination of liquid crystal phase space light modulator in 3D imaging of APD array
Shuai Wang, Huayan Sun, Huichao Guo
Aiming at the problem of beam scanning in low-resolution APD array in three-dimensional imaging, a method of beam scanning with liquid crystal phase-space optical modulator is proposed to realize high-resolution imaging by low-resolution APD array. First, a liquid crystal phase spatial light modulator is used to generate a beam array and then a beam array is scanned. Since the sub-beam divergence angle in the beam array is smaller than the field angle of a single pixel in the APD array, the APD's pixels respond only to the three-dimensional information of the beam illumination position. Through the scanning of the beam array, a single pixel is used to collect the target three-dimensional information multiple times, thereby improving the resolution of the APD detector. Finally, MATLAB is used to simulate the algorithm in this paper by using two-dimensional scalar diffraction theory, which realizes the splitting and scanning with a resolution of 5 x 5. The feasibility is verified theoretically.
Nanophotonic Materials VI: Luminescent, Optical Materials
icon_mobile_dropdown
Upconverting nanocrystals as luminescent temperature probes for local-heating imaging during direct laser writing 3D nanolithography
Simonas Varapnickas, Dovilė Baziulytė-Paulavičienė, Simas Šakirzanovas, et al.
Luminescence measurements of upconverting nanocrystals (UCNCs) dispersed in SZ2080 prepolymer being pro- cessed by direct laser writing (DLW) nanopolymerization technique are presented. Er3+ ions doped β-NaYbF4 and Er3+,Yb3+ co-doped β-NaGdF4 core and core-shell UCNCs were prepared by a thermal decomposition method. The ratio of the 2H11/24I15/2 and 4S3/24I15/2 emission intensities under λ = 975 nm excitation was confirmed to follow Boltzmann-type distribution in the temperature range from 20 °C to 200 °C and enabled a self-referenced optical readout of the sample temperature changes. Variation of thermally-coupled spectral bands fluorescence intensity ratio (FIR) was observed while prepolymer being processed under typical DLW conditions (1030 nm, 300 fs, 200 kHz, NA = 0.8) and Epulse varying from below modification threshold to the optical breakdown. Average fitted temperature changes around polymerized voxel measured ∆T1 < 30 °C within polymerization window and increases up to ∆T2~100 °C in overexposing regime.
Visible and IR spectroscopy of ablative ytterbium nanoparticles
Anna V. Tcibulnikova, Rodion Y. Borkunov , Valery V. Bryukhanov, et al.
The presence of plasmon resonance in the region of 375 nm for ytterbium nanoparticles obtained by laser ablation in the stabilizer of AOT in heptane is established in the work. The dimensions of the ytterbium nanoparticles are determined by the dynamic scattering method. Raman spectra and absorption spectra were measured in the IR region. Characteristic vibration frequencies for ytterbium nanoparticles and scattering bands for a pure ytterbium metal surface are determined.
Biophotonics V: Fibre Sensors and Plasmonic Nanoparticles
icon_mobile_dropdown
A fibre optic fluorescence sensor to measure redox level in tissues
Wen Qi Zhang, Janna L. Morrison, Jack R. T. Darby, et al.
We report the design of a fibre optic-based redox detection system for investigating differences in metabolic activities of tissues. Our system shows qualitative agreement with the results collected from a commercial two- photon microscope system. Thus, demonstrating the feasibility of building an ex vivo and in vivo redox detection system that is low cost and portable.
Hopfield neural network and optical fiber sensor as intelligent heart rate monitor
This paper presents a design and fabrication of an intelligent fiber-optic sensor used for examining and monitoring heart rate activity. It is found in the literature that the use of fiber sensors as heart rate sensor is widely studied. However, the use of smart sensors based on Hopfield neural networks is very low. In this work, the sensor is a three fibers without cladding of about 1 cm, fed by laser light of 1550 nm of wavelength. The sensing portions are mounted with a micro sensitive diaphragm to transfer the pulse pressure on the left radial wrist. The influenced light intensity will be detected by a three photodetectors as inputs into the Hopfield neural network algorithm. The latter is a singlelayer auto-associative memory structure with a same input and output layers. The prior training weights are stored in the net memory for the standard recorded normal heart rate signals. The sensors’ heads work on the reflection intensity basis. The novelty here is that the sensor uses a pulse pressure and Hopfield neural network in an integrity approach. The results showed a significant output measurements of heart rate and counting with a plausible error rate.
Orientation sensors by defocused imaging of single gold nano-bipyramids
Fanwei Zhang, Qiang Li, Wenye Rao, et al.
Optical probes for nanoscale orientation sensing have attracted much attention in the field of single-molecule detections. Noble metal especially Au nanoparticles (NPs) exhibit extraordinary plasmonic properties, great photostability, excellent biocompatibility and nontoxicity, and thereby could be alternative labels to conventional applied organic dyes or quantum dots. One type of the most interesting metallic NPs is Au nanorods (AuNRs). Its anisotropic emission accompanied with anisotropic shape is potentially applicable in orientation sensing. Recently, we resolved the 3D orientation of single AuNRs within one frame by deliberately introducing an aberration (slight shift of the dipole away from the focal plane) to the imaging system1 . This defocused imaging technique is based on the electron transition dipole approximation and the fact that the dipole radiation exhibits an angular anisotropy. Since the photoluminescence quantum yield (PLQY) can be enhanced by the “lightning rod effect” (at a sharp angled surface) and localized SPR modes, that of the single Au nano-bipyramid (AuNB) with more sharp tips or edges was found to be doubled comparing to AuNRs with a same effective size2. Here, with a 532 nm excitation, we find that the PL properties of individual AuNBs can be described by three perpendicularly-arranged dipoles (with different ratios). Their PL defocused images are bright, clear and exhibit obvious anisotropy. These properties suggest that AuNBs are excellent candidates for orientation sensing labels in single molecule detections.
Far-side geometrical enhancement in surface-enhanced Raman scattering with Ag plasmonic films
M. Nilusha M. N. Perera, W. E. Keith Gibbs, Saulius Juodkazis, et al.
Surface-enhanced Raman scattering (SERS) is a surface sensitive technique where the large increase in scattering has primarily been attributed to electromagnetic and chemical enhancements. While smaller geometrical enhancements due to thin film interference and cavity resonances have also been reported, an additional enhancement in the SERS signal, referred to as the ‘far-side geometrical enhancement’, occurs when the SERS substrate is excited through an underlying transparent dielectric substrate. Here the far-side geometrically-enhanced SERS signal has been explored experimentally in more detail. Thermally evaporated Ag plasmonic films functionalised with thiophenol were used to study the dependence of the geometrically-enhanced SERS signal on the excitation wavelength, supporting substrate material and excitation angle of incidence. The results were interpreted using a ‘geometrical enhancement factor’ (GEF), defined as the ratio of far-side to near-side SERS signal intensity. The experimental results confirmed that the highest GEFs of 3.2-3.5× are seen closer to the localized surface plasmon resonance peak of the Ag metallic nanostructures. Interestingly, the GEF for Ag plasmonic films deposited on glass and sapphire were the same within the measurement errors, whereas increasing angle of incidence showed a decrease in the GEF. Given this improved understanding of the far-side geometrical SERS enhancement, the potential for further signal amplification and optimisation for practical sensing applications can now be considered, especially for SERS detection modes at the farend of optical fibre probes and through process windows.
Novel Topics in Photonics II
icon_mobile_dropdown
Motion-compensated detection of heart rate based on the time registration adaptive filter
Lei Yang, Jinsong Zhou, Juanjuan Jing, et al.
A non-contact heart rate detection method based on the dual-wavelength technique is proposed and demonstrated experimentally. The heart rate is obtained based on the PhotoPlethysmoGraphy (PPG). Each detection module uses the reflection detection probe which is composed of the LED and the photodiode. It is a well-known fact that the differences in the circuits of two detection modules result in different responses of two modules for motion artifacts. It will cause a time delay between the two signals. This poses a great challenge to compensate the motion artifacts during measurements. In order to solve this problem, we have firstly used the time registration and translated the signals to ensure that the two signals are consistent in time domain. Then the adaptive filter is used to compensate the motion artifacts. Moreover, the data obtained by using this non-contact detection system is compared with those of the conventional finger blood volume pulse (BVP) sensor by simultaneously measuring the heart rate of the subject. During the experiment, the left hand remains stationary and is detected by a conventional finger BVP sensor. Meanwhile, the moving palm of right hand is detected by the proposed system. The data obtained from the proposed non-contact system are consistent and comparable with that of the BVP sensor. This method can effectively suppress the interference caused by the two circuit differences and successfully compensate the motion artifacts. This technology can be used in medical and daily heart rate measurement.
Microtechnology management considering test and cost aspects for stacked 3D ICs with MEMS
K. Hahn, M. Wahl, R. Busch, et al.
Innovative automotive systems require complex semiconductor devices currently only available in consumer grade quality. The European project TRACE will develop and demonstrate methods, processes, and tools to facilitate usage of Consumer Electronics (CE) components to be deployable more rapidly in the life-critical automotive domain. Consumer electronics increasingly use heterogeneous system integration methods and "More than Moore" technologies, which are capable to combine different circuit domains (Analog, Digital, RF, MEMS) and which are integrated within SiP or 3D stacks. Making these technologies or at least some of the process steps available under automotive electronics requirements is an important goal to keep pace with the growing demand for information processing within cars. The approach presented in this paper aims at a technology management and recommendation system that covers technology data, functional and non-functional constraints, and application scenarios, and that will comprehend test planning and cost consideration capabilities.
Poster Session
icon_mobile_dropdown
Complete achromatic and robustness electro-optic switch between two integrated optical waveguides
Wei Huang, Elica Kyoseva
In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.
Fabrication of overlaid nanopattern arrays for plasmon memory
Takao Okabe, Hisahiro Wadayama, Jun Taniguchi
Stacking technique of nanopattern array is gathering attention to fabricate next generation data storage such as plasmon memory. This technique provides multi- overlaid nanopatterns which made by nanoimprint lithography. In the structure, several metal nanopatterned layer and resin layer as a spacer are overlaid alternately. The horizontal position of nanopatterns to under nanopatterns and thickness of resin layer as spacer should be controlled accurately, because these parameters affect reading performance and capacity of plasmon memory. In this study, we developed new alignment mark to fabricate multi- overlaid nanopatterns. The alignment accuracy with the order of 300 nm was demonstrated for Ag nanopatterns in 2 layers. The alignment mark can measure the thickness of spacer. The relationship of spacer thickness and position of scale bar on the alignment mark was measured. The usefulness of the alignment mark for highdensity plasmon memory is shown.
Polarization state estimation of subwavelength hole arrays in 3D ellipse fields
Jue Wang, Lin Wang, Yanru Chen
Nanostructures like a piece of porous film with an array of nanoholes have many interesting properties with the existence of surface plasmon resonance. In this paper we use numerical simulation method to calculate the electric field and phase properties in near and far fields of a metal nanohole array. The effect of SPP on the near-field polarization state was found in the results. We also introduced a ring array structure which has a higher normalized transmission rate and two transmission peaks. In which we observed the existence of polarization singularities and the topology of the surrounding electric field is also determined.
Surface modification of nanoporous anodic alumina photonic crystals for photocatalytic applications
Herein, we report on the development of a rationally designed composite photocatalyst material by combining nanoporous anodic alumina-rugate filters (NAA-RFs) with photo-active layers of titanium dioxide (TiO2). NAA-RFs are synthesised by sinusoidal pulse anodisation and subsequently functionalised with TiO2 by sol-gel method to provide the photonic structures with photocatalytic properties. We demonstrate that the characteristic photonic stopband (PSB) of the surface-modified NAA-RFs can be precisely tuned across the UV-visible-NIR spectrum to enhance the photon-toelectron conversion of TiO2 by ‘slow photon effect’. We systematically investigate the effect of the anodisation parameters (i.e. anodisation period and pore widening time) on the position of the PSB of NAA-RFs as well as the photocatalytic performances displayed by these photonic crystal structures. When the edges of the PSB of surfacemodified NAA-RFs are positioned closely to the absorption peak of the model organic dye (i.e. methyl orange – MO), the photocatalytic performance of the system to degrade these molecules is enhanced under simulated solar light irradiation due to slow photon effect. Our investigation also reveals that the photocatalytic activity of surface-modified NAA-RFs is independent of slow photon effect and enhances with increasing period length (i.e. increasing anodisation period) of the photonic structures when there is no overlap between the PSB and the absorption peak of MO. This study therefore provides a rationale towards the photocatalytic enhancement of photonic crystals by a rational design of the PSB, creating new opportunities for the future development of high-performance photocatalysts.
Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors
This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.
Large 3D direct laser written scaffolds for tissue engineering applications
Anika Trautmann, Marieke Rüth, Horst-Dieter Lemke, et al.
We report on the fabrication of three-dimensional direct laser written scaffolds for tissue engineering and the seeding of primary fibroblasts on these structures. Scaffolds are realized by two-photon absorption induced polymerization in the inorganic-organic hybrid polymer OrmoComp using a 515 nm femtosecond laser. A nonstop single-line single-pass writing process is implemented in order to produce periodic reproducible large scaled structures with a dimension in the range of several millimeters and reduce process time to less than one hour. This method allows us to determine optimized process parameters for writing stable structures while achieving pore sizes ranging from 5 μm to 90 μm and a scanning speed of up to 5 mm/s. After a multi-stage post-treatment, normal human dermal fibroblasts are applied to the scaffolds to test if these macroscopic structures with large surface and numerous small gaps between the pores provide nontoxic conditions. Furthermore, we study the cell behavior in this environment and observe both cell growth on as well as ingrowth on the three-dimensional structures. In particular, fibroblasts adhere and grow also on the vertical walls of the scaffolds.
Optical coherence tomography for the structural changes detection in aging skin
Chih-Ming Cheng, Yu-Fen Chang, Hung-Chih Chiang, et al.
Optical coherence tomography (OCT) technique is an extremely powerful tool to detect numerous ophthalmological disorders, such as retinal disorder, and can be applied on other fields. Thus, many OCT systems are developed. For assessment of the skin textures, a cross-sectional (B-scan) spectra domain OCT system is better than an en-face one. However, this kind of commercial OCT system is not available. We designed a brand-new probe of commercial OCT system for evaluating skin texture without destroying the original instrument and it can be restored in 5 minutes. This modification of OCT system retains the advantages of commercial instrument, such as reliable, stable, and safe. Furthermore, the structural changes in aging skin are easily obtained by means of our probe, including larger pores, thinning of the dermis, collagen volume loss, vessel atrophy and flattening of dermal-epidermal junction. We can use this OCT technique in the field of cosmetic medicine such as detecting the skin textures and skin care product effect followup.
Analysis of driving force and exciting voltage for a bi-material infrared resonator
For a designed sensor with bi-material resonator which is used to detect infrared (IR) radiation by means of tracking the change in resonance frequency of the resonator with temperature attributed to the IR radiation from targets, in accordance with electromagnetic theory, the relationship between the electrical driving force exerted on the resonator and the exciting voltage applied across two electrodes of the capacitor in the sensor is presented. According to vibration theory, the dependence of the driving force on the exciting voltage is analyzed. The result of analysis is used to guide the vibration mode and frequency-amplitude response simulations of the resonator. The simulation value is approximately equal to the measured value, which demonstrates that the analysis result is effective and practicable.
The registration of non-cooperative moving targets laser point cloud in different view point
Shuai Wang, Huayan Sun, Huichao Guo
Non-cooperative moving target multi-view cloud registration is the key technology of 3D reconstruction of laser threedimension imaging. The main problem is that the density changes greatly and noise exists under different acquisition conditions of point cloud. In this paper, firstly, the feature descriptor is used to find the most similar point cloud, and then based on the registration algorithm of region segmentation, the geometric structure of the point is extracted by the geometric similarity between point and point, The point cloud is divided into regions based on spectral clustering, feature descriptors are created for each region, searching to find the most similar regions in the most similar point of view cloud, and then aligning the pair of point clouds by aligning their minimum bounding boxes. Repeat the above steps again until registration of all point clouds is completed. Experiments show that this method is insensitive to the density of point clouds and performs well on the noise of laser three-dimension imaging.
Opto-mechanical design and development of a 460mm diffractive transmissive telescope
Bo Qi, Lihua Wang, Zhangang Cui, et al.
Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope,the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm~656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.
Subwavelength wire array metamaterial microwave cavities
M. Al-Rubaiee, A. Alchalaby , H. Al-Janabi
Wire array metamaterial cavities and waveguides can be achieved by changing the resonance frequency of one or more unit cell surrounding by unit cells don’t support the resonance for certain frequency and hence obtain signal confinement only on the defect wires. Changing the resonance frequency of one or more unit cell was done in this work by changing the length of the unit cell. We validate our approach in experiment and simulation with electromagnetic waves in the microwave range.
Ross filter pairs for metal artefact reduction in x-ray tomography: a case study based on imaging and segmentation of metallic implants
Benedicta D. Arhatari, Brian Abbey
Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.
Methodology of mycobacteria tuberculosis bacteria detection by Raman spectroscopy
A. Zyubin, A. Lavrova, O. Manicheva, et al.
We have developed a methodology for the study of deactivated strains of Mycobacterium tuberculosis. Strains of the Beijing species obtained from pulmonary patient secrete (XDR strain) and reference strain (H37Rv) were investigated by Raman spectrometry with He-Ne (632,8 nm) laser excitation source. As a result of the research, the optimal experimental parameters have been obtained to get spectra of mycolic acids, which are part of the cell wall of mycobacteria.
Optical designs of the MicroFluar objectives for microscope: a compromise in the aberration correction
The obtaining a compromise aberration correction objectives for visual observation under a biological microscope. Well know, that objective is the most difficult and expensive element of the microscope optical system. This case, using of non so many elements objective give the opportunity to reduce the microscope price. But, the technical parameters of new objectives correspond better results of optical resolution.
Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands
B. Wang, R. Patterson, W. Chen, et al.
The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 ~2 eVs) from the edge of valence band top.
Lab-based x-ray tomography of a cochlear implant using energy discriminating detectors for metal artefact reduction
Viona S. K. Yokhana, Benedicta D. Arhatari, Timur E. Gureyev, et al.
X-ray computed tomography (XCT) is an important clinical diagnostic tool which is also used in a range of biological imaging applications in research. The increasing prevalence of metallic implants in medical and dental radiography and tomography has driven the demand for new approaches to solving the issue of metal artefacts in XCT. Metal artefacts occur when a highly absorbing material is imaged which is in boundary contact with one or more weakly absorbing components, such as soft-tissue. The resulting ‘streaking’ in the reconstructed images creates significant challenges for X-ray analysis due to the non-linear dependence on the absorption properties of the sample. In this paper we introduce a new approach to removing metal artefacts which exploits the capabilities of the recently available, photon-counting PiXirad detector. Our approach works for standard lab-based polychromatic X-ray tubes and does not rely on any postprocessing of the data. The method is demonstrated using both simulated data from a test phantom and experimental data collected from a cochlear implant. The results show that by combining the individual images, which are simultaneously generated for each different energy threshold, artefact -free segmentation of the implant from the surrounding biological tissue is achieved.
Ultrafast carrier dynamics in GaN/InGaN multiple quantum wells nanorods
Weijian Chen, Xiaoming Wen, Michael Latzel, et al.
GaN/InGaN multiple quantum wells (MQW) is a promising material for high-efficiency solid-state lighting. Ultrafast optical pump-probe spectroscopy is an important characterization technique for examining fundamental phenomena in semiconductor nanostructure with sub-picosecond resolution. In this study, ultrafast exciton and charge carrier dynamics in GaN/InGaN MQW planar layer and nanorod are investigated using femtosecond transient absorption (TA) techniques at room temperature. Here nanorods are fabricated by etching the GaN/InGaN MQW planar layers using nanosphere lithography and reactive ion etching. Photoluminescence efficiency of the nanorods have been proved to be much higher than that of the planar layers, but the mechanism of the nanorod structure improvement of PL efficiency is not adequately studied. By comparing the TA profile of the GaN/InGaN MQW planar layers and nanorods, the impact of surface states and nanorods lateral confinement in the ultrafast carrier dynamics of GaN/InGaN MQW is revealed. The nanorod sidewall surface states have a strong influence on the InGaN quantum well carrier dynamics. The ultrafast relaxation processes studied in this GaN/InGaN MQW nanostructure is essential for further optimization of device application.
Simple field enhancement formulation for gold bipyramids for application in two-photon luminescence and scattering
Stuart J. Flanders, Qiang Sun, James W. M. Chon
Bipyramidal gold nanorods have received a large amount of interest as a plasmonic nanomaterial due to highly localised field at their tips, which provide enhancement for emission processes. However, no proper evaluation of geometrical properties of bipyramids such as tip shape, curvature, pentagonal cross section or the waist have been conducted on the field enhancement and peak evolution. Here we present a full numerical simulation of field enhancement around bipyramidal gold nanorods with variation in geometry. We also present a simple analytical theory based on prolate spheroids to account for bipyramidal shape with correction factor to approximate the shape difference.
Partial coherence and the influence of overlap and curvature in ptychography
Guido Cadenazzi, Bo Chen, Timur Gureyev, et al.
In this paper, we use optical coherence theory to define the limit for the spatial coherence length with respect to the degree of overlap between adjacent probe positions in ptychography. The influence of the degree of curvature of the probe in relation to partial coherence in the Fresnel geometry for a fixed overlap is also considered. This work has implications for the application of ptychographic coherent imaging using partially coherent sources. We validate these results through a simulation study of coherence versus overlap parameter and curvature.
"Light-box" accelerated growth of poinsettias: LED-only illumination
Charitha Weerasuriya, Stewart Detez, Soon Hock Ng, et al.
For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a “light-box” which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the “light-box” including LED lamps and electronics was 850 AUD.
Reconfigurable microwave photonic transversal filter based on an integrated Kerr comb
A reconfigurable microwave photonic filter (MPF) based on an integrated Kerr comb source was proposed and demonstrated. By employing an on-chip micro-ring resonator (MRR), a broadband Kerr comb with a large number of comb lines was generated and used as a high-quality multi-wavelength source for the MPF, which greatly reduced the size and cost. The enhanced performance of the MPF was theoretically analysed and systematically characterized. Due to the large channel number and high reconfigurability of the scheme, the MPF features an improved Q factor and wideband tunability. The experimental results matches well with theory, verifying the feasibility of our approach as a solution towards implementing highly reconfigurable MPFs with reduced system complexity.
Formation and characterization of porous SiC by anodic oxidation using potassium persulfate solution
Y. Iwasa, S. Kamiyama, M. Iwaya, et al.
The formation process of porous SiC by anodic oxidation was investigated, aiming at the generation of pure white light with a high color rendering index (CRI) and high luminous efficiency. The efficiency of white light emission from porous SiC and its wavelength are strongly dependent on the porous structure such as the average pore size and porosity. In this study, we examined the structure and optical properties of porous SiC by adding potassium persulfate (K2S2O8) as an oxidant in HF solution to control the porosity of porous SiC formed by anodic oxidation. By increasing the amount of the oxidant, we enhanced the integrated light emission intensity of porous SiC to 81 times that of bulk SiC. Through the study of porous SiC we demonstrated that the peak wavelength of the porous SiC could be controlled from 370 to 500 nm. Porous SiC created by anodic oxidation was thus proven to have great potential for realizing high-CRI white light generation using LEDs.
Orientation dependence of dispersion and band gap of PIMNT single crystals
Chongjun He, Hongbing Chen, Jiming Wang, et al.
As piezoelectric materials, optical properties of xPb(In1/2Nb1/2)O3–(1-x-y)Pb(Mg1/3Nb2/3)O3–yPbTiO3 single crystals were not perfectly known. Here refractive indices and optical transmission of 0.25Pb(In1/2Nb1/2)O3–0.42Pb(Mg1/3Nb2/3)O3– 0.33PbTiO3 (PIMNT) single crystal are investigated after poled along different directions. Cauchy dispersion equations of the refractive indices were obtained by least square fitting, which can be used to calculate the refractive indices in the low absorption wavelength range. After poled along [011] direction, the optical transmission of PIMNT single crystal is more than 65% above 0.5 μm, which is much higher than that of [001] and [111] directions. Energy band gap was obtained from absorption coefficient.