Demonstration of theoretical and experimental simulations in fiber optics course
Author(s):
Tianfu Yao;
Xiaolin Wang;
Jianhua Shi;
Bing Lei;
Wei Liu;
Wei Wang;
Haojun Hu
Show Abstract
“Fiber optics” course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named “FB tool” which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.
Solar cell and photonics outreach for middle school students and teachers
Author(s):
Pamela O. Gilchrist;
Alonzo B. Alexander
Show Abstract
This paper will describe the curriculum development process employed to develop a solar cell and photonics curriculum unit for students underrepresented in science, technology, engineering and mathematics fields. Information will explain how the curriculum unit was piloted with middle and high school teachers from public schools in North Carolina, high school students from underrepresented groups in an informal science program, and workshop settings. Measures used to develop the curriculum materials for middle school students will be presented along with program findings documenting students’ urban versus rural interest in STEM, career aspirations, and 21st century learning skills in informal learning settings.
The Master's program in Advanced Optical Technologies: an interdisciplinary, international and individual approach
Author(s):
Jürgen Großmann;
Bernhard Schmauss
Show Abstract
The Master’s Program in Advanced Optical Technologies (MAOT) was established at the Friedrich-Alexander Universität Erlangen-Nürnberg in 2007 as part of the Elite Network of Bavaria (ENB), an initiative by the Bavarian State Government comprising about 40 elite Master’s programs and doctoral programs. MAOT can be studied after a Bachelor in physics or an engineering subject. The Master’s program realizes an innovative concept combining three core elements: (1) Interdisciplinarity: The program integrates courses and researchers from five engineering subjects and from physics. The degree of interdisciplinarity goes far beyond traditional programs. (2) Internationality: The program is taught entirely in English and special support is given to international students. (3). Individuality: The course curriculum was adapted at several points based on the experience in the initial years. The same is true for the way in which international students are supported and the type of support they need. The students are given an unusually high degree of freedom to develop an individual curriculum and to pursue research projects. Crucial experience and lessons learned are: (1) Lecturers and researchers have to be coordinated and the perspectives of the different disciplines have to be integrated within one program. Students must be guided in order to deal with the demands and challenges of the different disciplines. (2) International students need support with settling in Germany and with learning and working in a German cultural environment. They need support with administrative issues. Furthermore, they need to analyze and understand cultural differences and how they impact on the cooperation between lecturers and students and on the work in research groups. (3) Students must be helped to develop their own curriculum. They must learn how to combine their first-degree qualification with the specialized qualification which they gain after completing their Master’s program. They need to develop the skills to match their preferences with what is realistic and feasible.
Cathedral outreach: student-led workshops for school curriculum enhancement in non-traditional environments
Author(s):
Matthew T. Posner;
Alexander Jantzen;
Lieke D. van Putten;
Andrea Ravagli;
Andrei L. Donko;
Nathan Soper;
Nicholas H. L. Wong;
Pearl V. John
Show Abstract
Universities in the United Kingdom have been driven to work with a larger pool of potential students than just the more traditional student (middle-class white male), in order to tackle the widely-accepted skills-shortage in the fields of science, technology, engineering and mathematics (STEM), whilst honoring their commitment to fair access to higher education. Student-led outreach programs have contributed significantly to this drive. Two such programs run by postgraduate students at the University of Southampton are the Lightwave Roadshow and Southampton Accelerate!, which focus on photonics and particle physics, respectively. The program ambassadors have developed activities to enhance areas of the national curriculum through presenting fundamental physical sciences and their applications to optics and photonics research. The activities have benefitted significantly from investment from international organizations, such as SPIE, OSA and the IEEE Photonics Society, and UK research councils, in conjunction with university recruitment and outreach strategies. New partnerships have been formed to expand outreach programs to work in non-traditional environments to challenge stereotypes of scientists. This paper presents two case studies of collaboration with education learning centers at Salisbury Cathedral and Winchester Cathedral. The paper outlines workshops and shows developed for pupils aged 6-14 years (UK key stages 2-4) on the electromagnetic spectrum, particle physics, telecommunications and the human eye using a combination of readily obtainable items, hand-built kits and elements from the EYEST Photonics Explorer kit. The activities are interactive to stimulate learning through active participation, complement the UK national curriculum and link the themes of science with the non-traditional setting of a cathedral. We present methods to evaluate the impact of the activity and tools to obtain qualitative feedback for continual program improvement. We also share lessons learned to assist educators emulating this format of engagement, and provide ideas and inspiration of outreach activities for student chapters to carry out.
Near-field diffraction from amplitude diffraction gratings: theory, simulation and results
Author(s):
Kazi Monowar Abedin;
S.M. Mujibur Rahman
Show Abstract
We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.
Why do I need to know this? Optics/photonics problem-based learning in the math classroom
Author(s):
Matthew J. Donnelly;
Judith F. Donnelly;
Stephanie Donnelly
Show Abstract
A common complaint of engineering managers is that new employees at all levels, technician through engineer, tend to have rote calculation ability but are unable to think critically and use structured problem solving techniques to apply mathematical concepts. Further, they often have poor written and oral communication skills and difficulty working in teams. Ironically, a common question of high school mathematics students is “Why do I need to know this?” In this paper we describe a project using optics/photonics and Problem Based Learning (PBL) to address these issues in a high school calculus classroom.
Towards the computer visualization of electrodynamics education for undergraduates major in optics
Author(s):
Jing Liu;
Minhao Gao;
Yansong Fan
Show Abstract
We present a general review on using computer visualization technology to assist teaching electrodynamics for undergraduates in several Chinese universities. Based on our own teaching activities during the past decade in National University of Defense and Technology, China, we propose and discuss the necessity of computer visualization in electrodynamics course teaching for undergraduates major in optics for the first time. Then we will show how to help students to comprehend fundamental concepts and to understand the effect of parameters on core physical quantities through some teaching designs. At last, specified content inside the course that are suitable to be assisted by computer visualization are demonstrated.
New approaches in teaching laser engineering classes: modeling and building up a laser
Author(s):
Ilya Alexeev;
Christoph Pflaum;
Michael Schmidt
Show Abstract
We present a simulation tool to model performance of a bulk solid state laser and propose several ways how this tool can be used to enhance educational experience of the student studying laser technology. In one of the possible approaches, the ASLD software can complement available educational laser kits to provide the students with more universal practical training. In the second approach, which is the primary focus of this contribution, the ASLD software can be used as a development tool that allows students to verify their understanding of the subject as well as to propose and verify their own design ideas. The software can be extremely helpful if an experimantal setup has to be built from already present optical components in order to reduce the cost of training or if specific design objectives have to be attained.
Optical projects in the Clinic program at Harvey Mudd College
Author(s):
Q. Yang
Show Abstract
Clinic program is the senior capstone program at Harvey Mudd College (HMC). Multidisciplinary and industry-sponsored projects allow a team of students to solve a real-world problem over one academic year. Over its 50 plus years, Clinic program has completed numerous optics related projects. This report gives an overview of the Clinic program, reviews recent optical projects and discusses how this program supports the learning of the HMC engineering students. A few sample optical projects with more details are presented to provide an insight of what challenges that undergraduates can overcome. Students achieve learning within the optics discipline and the related engineering disciplines. The experiences in these optical projects indicate the great potential to bringing optical hands-on projects into the undergraduate level. Because of the general engineering curriculum at HMC, these projects often work the best with a multidisciplinary nature even if the core of the project is optically focused. Students gain leadership training, oral and written communication skills and experiences in team work. Close relationship with the sponsor liaisons allows for the students to gain skills in professional conduct, management of tight schedule and a specified budget, and it well prepares the students to their engineering practice. Optical projects have their own sets of specific challenges, so it needs to be chosen properly to match the undergraduate skill sets such as those of HMC engineering students.
Re-energizing enquiry among our young professionals
Author(s):
ChandraSekhar Roychoudhuri
Show Abstract
Children are born with enquiring mindset. They keep on asking questions to explore, understand and take part in their environment. However, modern educational systems discourage persistent enquiring questions. Most students, graduating from college, can use their enquiring faculties only to solve problems at hand. They accept the theories taught as the final models for the laws of nature. They safely assume that no further deeper enquiry is needed. This is a disturbing collective tendency counter to our continuously evolving nature. We should also consciously train our minds to evolve continuously by persistently asking enquiring questions. Therefore, we suggest that we take pro-active steps to re-energize the enquiring mindset among our young professionals by organizing enquiry forums for students from all international Student Chapters during most of our optical society meetings. Panels of volunteer senior scientists should encourage deep enquiring questions from the students. In this paper, as examples, I will present a set of enquiring questions in the field of optics that we have been underscoring to students. This is one of the three papers by this author for this conference, ETOP 100-43. Since scientific content-wise they complement each other, the readers should consult the others. They are: ETP100-36, "Consequences of repeated discovery and benign neglect of non-interaction of waves” and ETP100-83, and "Demonstration and implications when 50% beam combiners can behave as 0 or 100% reflector/transmitter inside some interferometers.”
Hierarchy curriculum for practical skills training in optics and photonics
Author(s):
XiaoDong Zheng;
XiaoPing Wang;
Xu Liu;
XiangDong Liu;
YuanFang Lin
Show Abstract
The employers in optical engineering fields hope to recruit students who are capable of applying optical principles to solve engineering problems and have strong laboratory skills. In Zhejiang University, a hierarchy curriculum for practical skill training has been constructed to satisfy this demand. This curriculum includes “Introductive practicum” for freshmen, “Opto-mechanical systems design”, “Engineering training”, “Electronic system design”, “Student research training program (SRTP)”, “National University Students’ Optical-Science-Technology Competition game”, and “Offcampus externship”. Without cutting optical theory credit hours, this hierarchy curriculum provides a step-by-step solution to enhance students’ practical skills. By following such a hierarchy curriculum, students can smoothly advance from a novice to a qualified professional expert in optics. They will be able to utilize optical engineering tools to design, build, analyze, improve, and test systems, and will be able to work effectively in teams to solve problems in engineering and design.
Using polarization maintaining fibers for the purpose of a polarization multiplex
Author(s):
M. Kyselák;
P. Šimák;
F. Dvořák;
Č. Vlček
Show Abstract
Due to increasing demands for bandwidth are nowadays very popular optical networks. Installation of new fiber-optic networks is expensive, so is necessary to use existing fiber optic network very effectively. The main parameters that limit the optical networks are dispersion and attenuation. Efficiency optical networks could improve the use of two polarization axes, similar to the technology used in radio technologies. Use of fiber preserves polarization allows the use of two polarization planes. This article deals with the optical wavelength division multiplex in the polarization maintaining fibers.
Solar powered rotorcraft: a multidisciplinary engineering challenge for undergraduate students
Author(s):
Aaron J. Danner;
Martin Henz;
Brian Shohei Teo
Show Abstract
Controlled, fully solar-powered flight in a rotorcraft is a difficult engineering challenge. Over the past five years, multidiciplinary teams of undergraduate engineering students at the National University of Singapore have built and test-flown a succession of increasingly impressive and larger, more efficient aircraft. While many other multidisciplinary or purely photonics projects are available to students in our programme, this particular project attracts an unusual level of excitement and devotion among students working on it. Why is that the case, and what, in general, makes a good final year undergraduate design project? These questions will be explored. Additionally, videos of solar helicopter test flights and spectacular crashes will be shown in the presentation for which the proceedings below have been prepared.
Active learning in optics for girls
Author(s):
R. Ali;
I. Ashraf
Show Abstract
Active learning in Optics (ALO) is a self-funded program under the umbrella of the Abdus Salam International Centre for Theoretical Physics (ICTP) and Quaid-i-Azam University (QAU) to bring physical sciences to traditionally underserved Girls high schools and colleges in Pakistan. There is a significant gender disparity in physical Sciences in Pakistan. In Department of Physics at QAU, approximately 10 to 20% of total students were used to be females from past many decades, but now this percentage is increasing. To keep it up at same pace, we started ALO in January 2016 as a way to provide girls an enriching science experiences, in a very friendly atmosphere. We have organized many one-day activities, to support and encourage girls’ students of government high schools and colleges to pursue careers in sciences. In this presentation we will describe our experience and lesson learned in these activities.
Chinese National Optical Education Small Private Online Course system
Author(s):
XiaoJie Zhang;
YuanFang Lin;
Xu Liu;
XiangDong Liu;
ZhaoFeng Cen;
XiaoTong Li;
XiaoDong Zheng;
XiaoPing Wang
Show Abstract
In order to realize the sharing of high quality course resources and promote the deep integration of ‘Internet+’ higher education and talent training, a new on-line to off-line specialized courses teaching mode was explored in Chinese colleges and universities, which emphasized different teaching places, being organized asynchronously and localized. The latest progress of the Chinese National Optical Education Small Private On-line Course (CNOESPOC) system set up by Zhejiang University and other colleges and universities having disciplines in the field of optics and photonics under the guidance of the Chinese National Steering Committee of Optics and Photonics (CNSCOP) was introduced in this paper. The On-line to Off-line (O2O) optical education teaching resource sharing practice offers a new good example for higher education in China under the background of Internet +.
Enriching contents of optical courses with cutting-edge knowledge in nanophotonics
Author(s):
Jianfa Zhang;
Wei Xu;
Chucai Guo;
Ken Liu;
Zhihong Zhu;
Wemin Ye;
Xiaodong Yuan;
Shiqiao Qin
Show Abstract
In the past two decades, the development of nanophotonics, particularly photonic crystals, plasmonics, metamaterials and 2D material photonics, has led to the demonstration of many new and exotic optical phenomena that greatly changed our understanding of optics and electromagnetics. Bringing such cutting-edge knowledge to optical courses for undergraduate and postgraduate students can not only help the students better understand the fundamental principles of optics but also significantly increase their study interests. We have done this in the past several years and here we show some examples ranging from metamaterials to the optical responses of graphene.
The Master level optics laboratory at the Institute of Optics
Author(s):
Per Adamson
Show Abstract
The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.
Teaching practice and effect of the curriculum design and simulation courses under the support of professional optical software
Author(s):
YuanFang Lin;
XiaoDong Zheng;
YuJia Huang
Show Abstract
Curriculum design and simulation courses are bridges to connect specialty theories, engineering practice and experimental skills. In order to help students to have the computer aided optical system design ability adapting to developments of the times, a professional optical software--Advanced System of Analysis Program (ASAP) was used in the research teaching of curriculum design and simulation courses. The ASAP tutorials conducting, exercises both complementing and supplementing the lectures, hands-on practice in class, autonomous learning and independent design after class were bridged organically, to guide students "learning while doing, learning by doing", paying more attention to the process instead of the results. Several years of teaching practice of curriculum design and simulation courses shows that, project-based learning meets society needs of training personnel with knowledge, ability and quality. Students have obtained not only skills of using professional software, but also skills of finding and proposing questions in engineering practice, the scientific method of analyzing and solving questions with specialty knowledge, in addition, autonomous learning ability, teamwork spirit and innovation consciousness, still scientific attitude of facing failure and scientific spirit of admitting deficiency in the process of independent design and exploration.
Discussion and group work design in O2O teaching of applied optics: questions, strategies and extending
Author(s):
Xiaotong Li;
Zhaofeng Cen;
Xiangdong Liu;
Zhenrong Zheng
Show Abstract
Applied optics course in Zhejiang University is a National Excellent Resource Sharing Course in China, and the online to offline teaching strategies have been implemented and shared with dozens of universities and colleges in China. Discussion is an important activity in teaching. In this paper our main consideration is designing the discussion questions and group works so as to develop the students’ critical thinking, cooperative and sharing spirits, and communication abilities in the cosmopolitan era. Typical questions that connect different chapters and help the students to understand the relationship between each sub-system in both field of view and aperture are given for discussion. We inspire the students to complete group works such as ray trace programming by cooperation and then make presentations. All of these create a circumstance for sharing thoughts and developing intelligence and knowledge. A poll shows that the students pay more attention to optical design than before and have made progress in conversation and cooperation.
Study and practice of flipped classroom in optoelectronic technology curriculum
Author(s):
Jianhua Shi;
Bing Lei;
Wei Liu;
Tianfu Yao;
Wenjie Jiang
Show Abstract
"Flipped Classroom" is one of the most popular teaching models, and has been applied in more and more curriculums. It is totally different from the traditional teaching model. In the "Flipped Classroom" model, the students should watch the teaching video afterschool, and in the classroom only the discussion is proceeded to improve the students’ comprehension. In this presentation, "Flipped Classroom" was studied and practiced in opto-electronic technology curriculum; its effect was analyzed by comparing it with the traditional teaching model.
Based on extensive and deep investigation, the phylogeny, the characters and the important processes of "Flipped Classroom" are studied. The differences between the "Flipped Classroom" and the traditional teaching model are demonstrated. Then "Flipped Classroom" was practiced in opto-electronic technology curriculum. In order to obtain high effectiveness, a lot of teaching resources were prepared, such as the high-quality teaching video, the animations and the virtual experiments, the questions that the students should finish before and discussed in the class, etc. At last, the teaching effect was evaluated through analyzing the result of the examination and the students' surveys.
Modular and extensible lesson on fiber optics for youths
Author(s):
Nicholas H. L. Wong;
Amy S. K. Tong;
Matthew T. Posner;
Andrea Ravagli
Show Abstract
Fiber optics and its application in telecommunications are rarely encountered by students until they reach tertiary education. While some secondary/middle school curricula may include coverage of basic geometrical optics concepts such as reflection and refraction, few if any go further to elaborate on how these eventually relate to global telecommunications. One could say that the science is made accessible for early-stage students, but discussions about applications are often reserved till later stages. In working through a PhD student-led optics educational outreach program called the “Lightwave Roadshow”, we have observed, via engagements with young students and the public at school visits and fairs, that many youths (as well as parents) do have a basic appreciation that the internet is somehow based on light signals. However, few know how the two are related, much less how they work. To address this, our team of ‘ambassadors’ in the Lightwave program has designed a self-contained lesson to introduce youths, aged 11 to 18 years, to fiber optics and optical fiber communications, drawing inspiration from various educational resources such as LASER ClassroomTM and the Exploratorium(R). The lesson is modularized into several parts, starting with using light to communicate Morse code, and then going into advanced concepts, such as total internal reflection and multiuser communications based on wavelength-division multiplexing. The latter can be treated as extensions whose inclusion can be tailored based on the youths’ educational levels. A feature of this lesson is that it takes amore phenomenological than theoretical approach, and uses materials that are easily obtainable or craftable as well as interesting for youths, including colored gelatin, LED sources, and water as a waveguide. We outline a lesson and pedagogical method which contains hands-on experiments that can be carried out by educators in formal or informal classes, students learning independently, or optics and photonics student chapters and groups doing educational outreach. The experiments within were first demonstrated at the 2016 OSA Frontiers in Optics/Laser Science conference.
A whole-process progressive training mode to foster optoelectronic students' innovative practical ability
Author(s):
Hairong Zhong;
Wei Xu;
Haojun Hu;
Chengfang Duan
Show Abstract
This article analyzes the features of fostering optoelectronic students’ innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of “Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base”, and meanwhile build a whole-process progressive training mode to foster optoelectronic students’ innovative practical ability, following the process of “basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project”: (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific research laboratory as a platform to explore; (4) To create an out-campus expanded training environment of optoelectronic major practice and optoelectronic system teaching and training, with the major practice base as an expansion of the platform; (5) To break students’ “pre-job training barriers” between school and work, with graduation design as the comprehensive training and testing link.
Student-centered and ability training-oriented curriculum reform in teaching Microcontroller Principles and Interface Techniques
Author(s):
Xiaoping Wang;
Peijun Cai;
Yuling Liu;
Liqiang Wang;
Yiyong Liang
Show Abstract
Courses are an important way of cultivating talents in college education. Advanced training schemes and the course system are implemented through course teaching. Advanced teaching notions and methods also rely on course teaching. Therefore, the quality of course teaching is the fundamental guarantor for grooming talent. The teachers of the course “Microcontroller Principles and Interface Techniques” in the Optical Science and Engineering College of Zhejiang University insist on course teaching becoming student centered and ability-training–oriented. They pay attention to students’all-round development in terms of learning ability, practical ability, innovation ability, and exploring spirit. They actively carried out course reforms in four aspects, namely teaching, learning, evaluation, and experimentation. This paper mainly introduced these reforms. First, the teaching method was reformed by introducing case analysis and the notion of a flipped classroom to shift the course focus from the teacher to the students. Second, the learning method was reformed through the use of techniques such as peer learning and project design to promote students’ sense of enquiry and learning initiative. Third, the evaluation method was reformed through the use of process assessment and diversity evaluation to encourage students to develop logical thinking and a down-to-earth manner. Fourth, the experimentation method was reformed by introducing hierarchical content, process management, and diversification of examination to change students’learning attitude from “dependence, passivity, and imitation” to “independence, active involvement, and creation.”In general, the teaching method reform promoted reforms in learning, evaluation, and experimentation methods and further improved the style of study. These reforms improved teachers’ teaching abilities and enabled course teaching to transform from being teacher centered to student centered. Years of exploration and practice results have shown that such reforms not only effectively inspire students to learn, explore, and practice actively, but also cultivate their creative spirit and courage to face challenges, providing a good platform for theirself-learning and personal growth. The course reforms discussed here have been highly recommended for their reference value.
Teaching the concept of convolution and correlation using Fourier transform
Author(s):
Debesh Choudhury
Show Abstract
Convolution operation is indispensable in studying analog optical and digital signal processing. Equally important is the correlation operation. The time domain community often teaches convolution and correlation only with one dimensional time signals. That does not clearly demonstrate the effect of convolution and correlation between two signals. Instead if we consider two dimensional spatial signals, the convolution and correlation operations can be very clearly explained. In this paper, we propose a lecture demonstration of convolution and correlation between two spatial signals using the Fourier transform tool. Both simulation and optical experiments are possible using a variety of object transparencies. The demonstration experiments help to clearly explain the similarity and the difference between convolution and correlation operations. This method of teaching using simulation and hands-on experiments can stimulate the curiosity of the students. The feedback of the students, in my class teaching, has been quite encouraging.
An optoelectric professional's training model based on Unity of Knowing and Doing theory
Author(s):
Shiqiao Qin;
Wei Wu;
Jiaxing Zheng;
Xingshu Wang;
Yingwei Zhao
Show Abstract
The “Unity of Knowing and Doing” (UKD) theory is proposed by an ancient Chinese philosopher, Wang Shouren, in 1508, which explains how to unify knowledge and practice. Different from the Chinese traditional UKD theory, the international higher education usually treats knowledge and practice as independent, and puts more emphasis on knowledge. Oriented from the UKD theory, the College of Opto-electric Science and Engineering (COESE) at National University of Defense Technology (NUDT) explores a novel training model in cultivating opto-electric professionals from the aspects of classroom teaching, practice experiment, system experiment, design experiment, research experiment and innovation experiment (CPSDRI). This model aims at promoting the unity of knowledge and practice, takes how to improve the students’ capability as the main concern and tries to enhance the progress from cognition to professional action competence. It contains two hierarchies: cognition (CPS) and action competence (DRI). In the cognition hierarchy, students will focus on learning and mastering the professional knowledge of optics, opto-electric technology, laser, computer, electronics and machine through classroom teaching, practice experiment and system experiment (CPS). Great attention will be paid to case teaching, which links knowledge with practice. In the action competence hierarchy, emphasis will be placed on promoting students’ capability of using knowledge to solve practical problems through design experiment, research experiment and innovation experiment (DRI). In this model, knowledge is divided into different modules and capability is cultivated on different levels. It combines classroom teaching and experimental teaching in a synergetic way and unifies cognition and practice, which is a valuable reference to the opto-electric undergraduate professionals’ cultivation.
Why not serve an educational buffet for students? Blended learning in optics experimental education
Author(s):
Ya Zhou;
Yao Hu;
Liquan Dong;
Ming Liu;
Yuejin Zhao;
Lingqin Kong;
Qun Hao;
Yifan Huang
Show Abstract
When talking about higher education, it’s hard not to run into a discussion on what’s really better for student learning: online learning or traditional learning? Of course, the key is to offer both, and potentially emphasize blended learning as the less polarizing option. Online courses are much more flexible and less expensive, but powerless while hands-on practical capacity is involved. Traditional experimental course can maintain a fluid and solid learning process but is less productive due to its scheduled time and simplex access. In this paper, a buffet-style knowledge service mode applied in a 12-week-long project-based experimental course Optoelectronic Instrument Experiments (OIE) is discussed. Our purpose is to find a blended learning mode in experimental education.
The application of micro-lesson in optics teaching
Author(s):
Suzhen Yuan;
Xuefeng Mao;
Yongle Lu;
Yan Wang;
Yuan Luo
Show Abstract
In order to improve students’ ability on self-study, this paper discusses the application of micro-lesson as a supplementary way in the course of optics teaching. Both geometric optics and wave optics require a lot of demos, fortunately, micro-lesson just meets this requirement. Nowadays, college education focuses on quality education, so the new nurture scheme of most universities shortened the class hours. However, the development of students and the social needs also require students to have a solid foundation. The effective way to solve this contradiction is to improve the efficiency of classroom teaching and provide the repeatable learning form, micro-lesson.
Visualization of polarization state and its application in optics classroom teaching
Author(s):
Bing Lei;
Wei Liu;
Jianhua Shi;
Wei Wang;
Tianfu Yao;
Shugang Liu
Show Abstract
Polarization of light and the related knowledge are key and difficult points in optical teaching, and they are difficult to be understood since they are very abstract concepts. To help students understand the polarization properties of light, some classroom demonstration experiments have been constructed by employing the optical source, polarizers, wave plates optical cage system and polarization axis finder (PAF). The PAF is a polarization indicating device with many linear polarizing components concentric circles, which can visualize the polarization axis’s direction of linearly polarized light intuitively. With the help of these demonstration experiment systems, the conversion and difference between the linear polarized light and circularly polarized light have been observed directly by inserting or removing a quarter-wave plate. The rotation phenomenon of linearly polarized light’s polarization axis when it propagates through an optical active medium has been observed and studied in experiment, and the strain distribution of some mounted and unmounted lenses have also been demonstrated and observed in experiment conveniently. Furthermore, some typical polarization targets, such as liquid crystal display (LCD), polarized dark glass and skylight, have been observed based on PAF, which is quite suitable to help students understand these targets’ polarization properties and the related physical laws. Finally, these demonstration experimental systems have been employed in classroom teaching of our university in physical optics, optoelectronics and photoelectric detection courses, and they are very popular with teachers and students.
Exploration and practice in-class practice teaching mode
Author(s):
Xue-Ping Zang;
Wei-Feng Wu
Show Abstract
According to the opto-electronic information science and engineering professional course characteristics and cultivate students’ learning initiative, raised the teaching of photoelectric professional course introduce In-class practice teaching mode. By designing different In-class practice teaching content, the students' learning interest and learning initiative are improved, deepen students' understanding of course content and enhanced students' team cooperation ability. In-class practice teaching mode in the course of the opto-electronic professional teaching practice, the teaching effect is remarkable.
Consequences of repeated discovery and benign neglect of non-interaction of waves (NIW)
Author(s):
ChandraSekhar Roychoudhuri
Show Abstract
This paper presents the historical background behind the repeated discovery and repeated ignoring of the generic important property of all propagating waves, the Non-Interaction of Waves (NIW). The focus will be on the implications of NIW in most of the major optical phenomena with brief hints of importance. We argue that the prevailing postulate of wave-particle duality becomes unnecessary, once we accept NIW. Semi-classical model of treating light-matter interactions should be the preferred approach since the quantumness actually arises from within the structure of the energy levels (bands) in materials. Waves, and wave equations, do not support bullet-like propagation. We follow the historical trend starting from the tenth century physicist Alhazen, to the seventeenth century Newton and Huygens, then to the nineteenth century Young and Fresnel. Then we jump to twentieth century physicists Planck, Einstein, Bose, Dirac and Feynman. Had we recognized and appreciated NIW property of waves from the time of Alhazen, the evolutionary history of physics would have been dramatically different from what we have today. The prevailing dominance of the postulate of wave-particle duality is keeping us confused from seeking out actual reality; and hence, we should abandon this concept and search out better models. The paper demonstrates that NIW provides us with a platform for deeper understanding of the nature of EM waves that we have missed; it is not just semantics.
Teaching stellar interferometry with polymer optical fibers
Author(s):
M. A. Illarramendi;
L. Arregui;
J. Zubia;
R. Hueso;
A. Sanchez-Lavega
Show Abstract
In this manuscript we show the design of a simple experiment that reproduces the operation of the Michelson stellar interferometer by using step-index polymer optical fibers. The emission of stellar sources, single or binary stars, has been simulated by the laser light emerging from the output surface of the 2 meter-long polymer optical fiber. This light has an emission pattern that is similar to the emission pattern of stellar sources - circular, uniform, spatially incoherent, and quasi-monochromatic. Light coming from the fiber end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference. Interference fringes have been acquired using a camera that is coupled to a telescope. The experiments have been carried out both outdoors in the daytime and indoors. By measuring the fringe visibilities, we have determined the size of our artificial stellar sources and the distance between them, when placing them at distances of 54 m from the telescope in the indoor measurements and of 75 m in the outdoor ones.
Optics simulations: a Python workshop
Author(s):
H. Ghalila;
A. Ammar Jr.;
S. Varadharajan;
Y. Majdi;
M. Zghal;
S. Lahmar;
V. Lakshminarayanan
Show Abstract
Numerical simulations allow teachers and students to indirectly perform sophisticated experiments that cannot be realizable otherwise due to cost and other constraints. During the past few decades there has been an explosion in the development of numerical tools concurrently with open source environments such as Python software. This availability of open source software offers an incredible opportunity for advancing teaching methodologies as well as in research. More specifically it is possible to correlate theoretical knowledge with experimental measurements using “virtual” experiments. We have been working on the development of numerical simulation tools using the Python program package and we have concentrated on geometric and physical optics simulations. The advantage of doing hands-on numerical experiments is that it allows the student learner to be an active participant in the pedagogical/learning process rather than playing a passive role as in the traditional lecture format. Even in laboratory classes because of constraints of space, lack of equipment and often-large numbers of students, many students play a passive role since they work in groups of 3 or more students. Furthermore these new tools help students get a handle on numerical methods as well simulations and impart a “feel” for the physics under investigation.
Observations and theoretical evaluations of color changes of traveling light beams caused by optical rotation phenomena in sugared water and their applications for educational purposes
Author(s):
Seika Tokumitsu;
Makoto Hasegawa
Show Abstract
Investigations were conducted for the purposes of understanding coloring phenomena to be caused by optical rotation of polarized light beams in sugared water and realizing their applications as educational tools. By allowing polarized laser beams in red, blue or green to travel in sugared water of certain concentrations, changes in their intensities were measured while changing a distance between a pair of polarizing plates in the sugared water. An equation was established for a theoretical value for the angle of rotation for light of any colors (wavelengths) travelling in sugared water of any concentrations. The predicted results exhibited satisfactory matching with the measured values. In addition, the intensities of transmitted laser beams, as well as colors to be observable when a white-color LED torch was employed as a light source, were also become predictable, and the predicted results were well-matched with the observation results.
Photonics in nature: Yellowstone National Park in IR
Author(s):
Michael Vollmer;
Joseph A. Shaw;
Paul W. Nugent;
Wilson Harris;
Kendra Gillis;
William Weiss;
Logan Carpenter;
Amy Carpenter;
Bryan Scherrer
Show Abstract
Infrared thermal imaging is a valuable tool not only in science but also in optics and photonics education and outreach activities. Observing natural optical phenomena in a different spectral region like the thermal infrared often offers new insights. The commonly used false color images not only allow extraction of useful information about thermal properties of objects, but they can also provide aesthetic sights and are thus an excellent tool for public outreach activities. Recently we have pursued this kind of study using IR imaging within Yellowstone National Park, complementing earlier work on thermal pool colors and spectroscopy. We will discuss and compare images of a variety of VIS and IR cameras of hot springs, geysers, mud pools and other natural phenomena recorded in the park during 2012 and 2016.
Demonstration and implications when 50% beam combiners can behave as 0% or 100% reflector/transmitter inside some interferometers
Author(s):
ChandraSekhar Roychoudhuri
Show Abstract
The purpose of this paper is to embolden students to raise basic questions regarding the feasibility of “indivisible single photon interference”. We do this by presenting experimental results of well-known classical Mach-Zehnder interferometer (MZI) under two different conditions of beam alignment. We routinely do such experiments in our laboratories. In the first case, we align the light beams on the beam combiner (BC) with their Poynting vectors as perfectly collinear. The 50% dielectric boundary can now transmit 100% of the energy of both the beams into either one of the two MZI output ports, depending upon the relative phase between the two beams combined on the BC from the opposite directions. The dielectric boundary layer actively re-directs the energy from one beam to the other. This is pure classical superposition effect. In the second case, we combine the two beams on the BC with a small intersecting angle. Now the BC functions as a 50% beam splitter to both the beams. One can see spatial fringes as the relative phase varies with spatial distance by placing a photo detector array after the BC. At very low intensity, the quantum properties of the photo detector will become apparent because the photo electrons are discrete and are always bound quantum mechanically to its host molecular assembly; and not because light is definitely quantized. Students can learn to distinguish the pedagogical difference between the Superposition Principle (linear sum of wave amplitudes) and the Superposition Effect (square modulus of the sum of all the wave-induced stimulations) as observable intensity variations due to interaction with materials, classical or quantum.
Interactive virtual optical laboratories
Author(s):
Xuan Liu;
Yi Yang
Show Abstract
Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.
Optics education in an optometric setting
Author(s):
Nicole M. Putnam
Show Abstract
The first year optics curriculum at the Arizona College of Optometry aims to provide students with an understanding of geometrical, physical, and visual optics principals that will be the foundation of their clinical understanding of the optics of the eye and its correction in advanced courses such as ophthalmic optics and contact lenses. Although the optics of the eye are a fantastic model to use in optics education, the clinical applications may not become apparent until later in the course of study. Successful strategies are needed to engage students and facilitate the understanding of optical principals and the growth of process skills including problem solving, analysis, and critical thinking that will help in their future as health care providers. These include the implementation of ophthalmic applications as early as possible, encouragement of group work including open office hours, and the use of video problem set solutions to supplement traditional static solutions.
Optical engineering: understanding optical system by experiments
Author(s):
Toralf Scharf
Show Abstract
Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.
The exploration and practice of the integrative and continuous optoelectronic practical teaching system
Author(s):
Ying Wang;
Xinliang Zhang;
Xiaofei Yang;
Xiulin Kuang
Show Abstract
As a national pilot institute of the educational reform on practical teaching, an integrative and continuous practical teaching was established and implemented through four measures: promote a practical teaching system that is available for every undergraduate throughout their whole bachelor program; integrate the design of theoretical the practical teaching to closely associate the theoretical course with practical teaching; construct a complete practical teaching system by including experiment teaching, course design, project practice and extracurricular innovative practice; improve the level of practical teaching by appropriately allocating scientific research team, relevant personnel and resource. Based on the exploration and practice of this kind of practical teaching system, the integrative competence and quality of the undergraduates and graduates are both improved.
An improved Michelson interferometer: smoothing out the rough spots for a more effective teaching tool
Author(s):
Clarke K. Eastman
Show Abstract
The Michelson interferometer is a classic tool for demonstrating the wave nature of light, and it is a cornerstone of the optics curriculum. But many students’ experiences with this device are higher in frustration than they are in learning. That situation motivated an effort to make aligning the tool less a test of a visual acuity and patience, and more of an introduction to optics phenomena and optical engineering. Key improvements included an added beam-splitter to accommodate multiple observers, a modified telescope to quickly and reliably obtain parallel mirrors, and a series of increasing spectral-width light sources to obtain equal path lengths. This greatly improved students’ chances of success, as defined by achieving “white light fringes”. When presenting these new features to the students, high importance is placed on understanding why alignment was so difficult with the original design, and why the changes made alignment easier. By exposing the rationale behind the improvements, students can observe the process of problem-solving in an optical engineering scenario. Equally important is the demonstration that solutions can be devised or adapted based on the parts at hand, and that implementations only achieve a highly “polished’ state after several design iterations.
Optical circulator analysis and optimization: a mini-project for physical optics
Author(s):
Zhujun Wan
Show Abstract
One of the mini-projects for the course of physical optics is reported. The project is designed to increase comprehension on the basics and applications of polarized light and birefringent crystal. Firstly, the students are required to analyze the basic principle of an optical circulator based on birefringent crystal. Then, they need to consider the engineering optimization problems. The key tasks include analyzing the polarization transforming unit (composed of a half-waveplate and a Faraday rotator) based on Jones matrix, maximizing the walk-off angle between e-ray and o-ray in birefringent crystal, separating e-ray and o-ray symmetrically, employment of a transformed Wollaston prism for input/output coupling of optical beams to fibers. Three years' practice shows that the project is of moderate difficulty, while it covers most of the related knowledge required for the course and helps to train the engineering thinking.
Introduction of optical tweezers in advanced physics laboratory
Author(s):
Gang Wang
Show Abstract
Laboratories are an essential part of undergraduate optoelectronics and photonics education. Of particular interest are the sequence of laboratories which offer students meaningful research experience within a reasonable time-frame limited by regular laboratory hours. We will present our introduction of optical tweezers into the upper-level physics laboratory. We developed the sequence of experiments in the Advanced Lab to offer students sufficient freedom to explore, rather than simply setting up a demonstration following certain recipes. We will also present its impact on our current curriculum of optoelectronics concentration within the physics program.
Light-based science and technologies and human civilization: an optical course for general education
Author(s):
Xiaotong Li;
Kaiwei Wang;
Qing Yang;
Ke Si
Show Abstract
Starting from 2015, a general education course named “Light-based science and technologies and human civilization” has been offered in Zhejiang University. We try to give a humanism view angle to observe optics and optical engineering, and combine them with the relationship of human and the nature, the development of human society and human health. In this course we introduce different historical periods of light-based science and technologies, the great optical researchers, the typical research methods, advantages, academic discussions and the relationship with human civilization. The relevant cross-fields of learning and Nobel Prize winners are also included. This course provides the students with the typical examples about how academic revolution influences the world development, and also with humanism sight which exceeds the range of science and technologies themselves.
Optoelectronic lessons as an interdisciplinary lecture
Author(s):
Dan Wu;
Maocheng Wu;
Jihua Gu
Show Abstract
It is noticed that more and more students in college are passionately curious about the optoelectronic technology, since optoelectronic technology has advanced extremely quickly during the last five years and its applications could be found in a lot of domains. The students who are interested in this area may have different educational backgrounds and their majors cover science, engineering, literature and social science, etc. Our course “History of the Optoelectronic Technology” is set up as an interdisciplinary lecture of the “liberal education” at our university, and is available for all students with different academic backgrounds from any departments of our university. The main purpose of the course is to show the interesting and colorful historical aspects of the development of this technology, so that the students from different departments could absorb the academic nourishment they wanted. There are little complex derivations of physical formulas through the whole lecture, but there are still some difficulties about the lecture which is discussed in this paper.
Ball game watching theory in the teaching site
Author(s):
Shugang Liu;
Xiufang Li;
Chin-Jung Chuang
Show Abstract
Lecturing is a common approach in the traditional teaching site. In this paper, we bring a modern model “ball game watching theory” to explain the situation in the classroom. The reason why the audiences going to the court is to enjoy the atmosphere, and it is also the reason why student joining to the class. A successful class running is to create studious atmosphere. However, once the teacher does the demo in the class, the multimedia tool must be used to show the details, as the big display working in the court. The key moment is recorded and the details are magnified. when teaching aids are demonstrated, the multimedia tool plays an important role. The attention of students walks between the teacher and the display. In this ball game watching theory, the demonstrate experience is like the ball game, and the teacher works as an anchor. By following the demonstration proceeding, students build the knowledge by themselves. In addition, the demonstration must be designed to be interesting in order to make the class proceed fluently. The similarity between the ball game watching and the class will be discussed. Finally we suggest a modern class design which can raise learner motivation and achievement.
Development of multidisciplinary nanotechnology undergraduate education program at the University of Rochester Integrated Nanosystems Center
Author(s):
Svetlana G. Lukishova;
Nicholas P. Bigelow;
Paul D. D'Alessandris
Show Abstract
Supported by the U.S. National Science Foundation educational grant, a coherent educational program at the University of Rochester (UR) in nanoscience and nanoengineering, based on the Institute of Optics and Intergrated Nanosystems Center resources was created. The main achievements of this program are (1) developing curriculum and offering the Certificate for Nanoscience and Nanoengineering program (15 students were awarded the Certificate and approximately 10 other students are working in this direction), (2) creating a reproducible model of collaboration in nanotechnology between a university with state-of-the-art, expensive experimental facilities, and a nearby, two-year community college (CC) with participation of a local Monroe Community College (MCC). 52 MCC students carried out two labs at the UR on the atomic force microscopy and a photolithography at a clean room; (3) developing reproducible hand-on experiments on nanophotonics (“mini-labs”), learning materials and pedagogical methods to educate students with diverse backgrounds, including freshmen and non-STEM-major CC students. These minilabs on nanophotonics were also introduced in some Institute of Optics classes. For the Certificate program UR students must take three courses: Nanometrology Laboratory (a new course) and two other selective courses from the list of several. Students also should carry out a one-semester research or a design project in the field of nanoscience and nanoengineering.
Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics
Author(s):
Bo-Han Lyu;
Chen Wang;
Chun-Wei Tsai
Show Abstract
Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon – Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.
Learning in depth with the bespoke rubric-supported online poster presentation
Author(s):
Alireza Lajevardipour;
Andrew Wood
Show Abstract
In our course of Biomedical Imaging, we introduced a research project as an assignment that included an online poster presentation. To assess the assignment, an adjusted criteria sheet was created, where it facilitated providing students with an effective feedback linked to particular criteria. Students are expected to produce a scientific poster to present the result of their investigation and upload it to an online discussion board. In addition, they are required to read their colleagues’ works and provide peer-feedback by asking quality questions about principles and results, also on-line. Subtle distribution of marks in the rubric balances focus between preparing poster and providing peer-feedbacks.
Optical virtual experimental simulation platform: SeeLight
Author(s):
Qiuyan Tang;
Quan Sun;
He Liu;
Pin Lv
Show Abstract
Modeling and simulation platform of optical teaching experiments SeeLight was proposed. Its modeling range covers a variety of simple or complex optical systems including geometrical optics, wave optics, adaptive optics, information optics, polarization analysis, and so on. It has seven categories of models and more than 50 simulation application examples, so that many optical teaching experiments can be done on this platform. The platform is based on the component-based software architecture. And the operating efficiency is greatly improved based on high-performance computing framework. And it’s not only a stand-alone version, but also web version, which provides convenience for the user to build optical simulation systems. So that the complex optical experiment can be easily implemented on the platform, and the parameters of the experimental system can be adjusted flexibly, which greatly reduce the experimental cost and improve the efficiency of the experimental analysis. And in the process of simulation, not only the results of all optical components which have different spatial locations can be observed, but also users can observe the results over time. And the high-performance computing framework greatly improves the efficiency of the platform. Multiple optical simulation systems of comparative experiments can be simultaneously simulated. The functional structure, typical features and key simulation difficulties of this platform were discussed in detail. Finally, several simulation examples were given.
Interactive teaching and learning with smart phone app in Optoelectronic Instruments course
Author(s):
Yao Hu;
Qun Hao;
Ya Zhou;
Yifan Huang
Show Abstract
Optoelectronic Instruments is a comprehensive professional course for senior students majored in optical engineering and similar specialties. Due to the low lecturer/ student ratio, typically less than 1:100, most of the students gave up the chance of one-to-one communication with the lecturers even when they were confused about the principle or applications of the instruments. A smart phone App Rain Classroom associated with messaging App Wechat is introduced. It enables the lecturers to receive instant feedback from students through bullet screen, push preview and review materials and post in-class quiz. Investigation also shows that 76% of the students enjoyed the new interactive tool, acknowledging its help in understanding the topic better, improving in-class interaction, and after class communications.
Experimental teaching and training system based on volume holographic storage
Author(s):
Zhuqing Jiang;
Zhe Wang;
Chan Sun;
Yutong Cui;
Yuhong Wan;
Rufei Zou
Show Abstract
The experiment of volume holographic storage for teaching and training the practical ability of senior students in Applied Physics is introduced. The students can learn to use advanced optoelectronic devices and the automatic control means via this experiment, and further understand the theoretical knowledge of optical information processing and photonics disciplines that have been studied in some courses. In the experiment, multiplexing holographic recording and readout is based on Bragg selectivity of volume holographic grating, in which Bragg diffraction angle is dependent on grating-recording angel. By using different interference angle between reference and object beams, the holograms can be recorded into photorefractive crystal, and then the object images can be read out from these holograms via angular addressing by using the original reference beam. In this system, the experimental data acquisition and the control of the optoelectronic devices, such as the shutter on-off, image loaded in SLM and image acquisition of a CCD sensor, are automatically realized by using LabVIEW programming.
MATLAB-aided teaching and learning in optics and photonics using the methods of computational photonics
Author(s):
Zhili Lin;
Xiaoyan Li;
Daqing Zhu;
Jixiong Pu
Show Abstract
Due to the nature of light fields of laser waves and pulses as vector quantities with complex spatial distribution and temporal dependence, the optics and photonics courses have always been difficult to teach and learn without the support of graphical visualization, numerical simulations and hands-on experiments. One of the state-of-the-art method of computational photonics, the finite-difference time-domain(FDTD) method, is applied with MATLAB simulations to model typical teaching cases in optics and photonics courses. The obtained results with graphical visualization in the form of animated pictures allow students to more deeply understand the dynamic process of light interaction with classical optical structures. The discussed teaching methodology is aimed to enhance the teaching effectiveness of optics and photonics courses and arousing the students' learning interest.
The PAD Class: a new paradigm for university classroom teaching
Author(s):
Xuexin Zhang
Show Abstract
The PAD Class (Presentation-Assimilation-Discussion) is a new paradigm for classroom teaching combining strengths of lecture and discussion. With half class time allocated for teacher's presentation and the other half for students' discussion, an assimilation stage was inserted between presentation and discussion for independent and individualized learning. Since its first success in 2014, the PAD method has gained national popularity in China and been successfully put into practice by thousands of college teachers in nearly all subjects, e.g., science, engineering, medical sciences, social sciences, humanities and arts. This paper analyzed the psychological and pedagogical rationales underlying the PAD Class to explicate its effectiveness in enhancing active learning.
Optical test course teaching practice on WeChat public platform
Author(s):
Yuegang Fu;
Zhiying Liu
Show Abstract
With the development of information technological progress, M-Learning and Micro-learning is becoming more and more popular among learners as a new micro-learning resources. Micro-curriculum is playing a more and more important role in daily learning. The students can create a new way of optical course learning through "WeChat". Under the mutual interaction of two or more parties, the use of "WeChat" can fully arouse the students' interest in learning, make the subjective initiative of students, and achieve the ultimate goal of improving the level of students. In this paper, through the analysis of the current situation of college students using the "WeChat", a new teaching model suitable for "optics" teaching is summarized, and the use of "WeChat" has been infiltrated into the teaching process, using science and technology to assist teaching. Students' interest in autonomous learning.
Innovative training strategy for higher education: the photonics training platform at University of Bordeaux
Author(s):
Marie Bénédicte Vieules;
Jean Oberlé;
Eric Cormier
Show Abstract
The Photonics training platform of University of Bordeaux aims at renewing higher education offer by structuring training (initial and continuing) on a "sector-specific" approach. The initiative is organized around key professional sectors identified in collaboration with regional socio-economic partners as well as research and teaching teams from Bordeaux’s higher education facilities.
The training platform intends to improve the hiring potential of students through a better match between the initial training courses and the labor market needs and to develop lifelong training courses in the University of Bordeaux. It aims at organizing these courses according to an approach by field and to establish their position at national and international levels.
The platform acts on three priority axes: training provision, national and international partnerships, pedagogical innovation as well as lifelong learning improvement. Its strategy is based on the latter priorities and consists in the development of the training offer on the application sectors in close connection with industrials and a significant involvement in internationalization.
The Photonics training platform strives to become a collaborative lab of ideas to design innovative learning tools by revisiting teaching methods in relation with technological developments; create a community of education experts in the field of photonics to spread this key enabling technology around scientific thematic taught in university.
This project provides resources available to all stakeholders for better efficiency in the design and management of training projects and will be engaged in a continuous improvement process to establish the continuity of projects and quality enhancement.
Comparison and enlightenment of optical higher education between America and China
Author(s):
Rui Wang;
Xi Cheng Zhang;
Lei Si
Show Abstract
In this paper, from the perspective of a teacher and a student, the differences on the educational implementation process, education effect, educational philosophy and thinking mode between America and China are studied, based on personal experience, visiting communication and research thinking etc.. The reasons for these differences are analyzed. The factors which influence a country’s higher education, the core training contents and how to more effectively cultivate the talents of optics and photonics are also put forward. We hope this will help improve higher education.
Curriculum design and German student exchange for Sino-German Bachelor program majored in optoelectronics engineering
Author(s):
Jihong Zheng;
Thomas Fuhrmann;
Boqing Xu;
Rupert Schreiner;
Hongzhi Jia;
Wei Zhang;
Ning Wang;
Gudrun Seebauer;
Jiyan Zhu
Show Abstract
Different higher education backgrounds in China and Germany led to challenges in the curriculum design at the beginning of our cooperative bachelor program in Optoelectronics Engineering. We see challenges in different subject requirements from both sides and in the German language requirements for Chinese students. The curriculum was optimized according to the ASIIN criteria, which makes it acceptable and understandable by both countries. German students are integrated into the Chinese class and get the same lectures like their Chinese colleagues. Intercultural and curriculum challenges are successfully solved. The results are summarized to provide an example for other similar international programs.
Launching partnership in optics and photonics education between University of Rochester and Moscow Engineering Physics Institute NRNU MEPhI
Author(s):
Svetlana G. Lukishova;
Irina N. Zavestovskaya;
Xi-Cheng Zhang;
Yury A. Aleshchenko;
Vitaly I. Konov
Show Abstract
A collaboration in education between the oldest and one of the most comprehensive Optics schools in U.S., the Institute of Optics (IO), University of Rochester (UR), and one of the most recognized Russian university, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) was started in 2015 by signing an agreement on a double-Master's degree program in optics. It was based on earlier collaboration between research groups in both universities. In summer of 2016, nine UR Optics undergraduate students participated with MEPhI students at the International School on Optics and Laser Physics in MEPhI. During five days they were immersed into the world of cutting edge research, technologies and ideas that Russian, European and U.S. scientists offered them. This School also included tours of MEPhI Nanotechnologies and Lasers Centers and Nano-bioengineering Laboratory as well as of scientific laboratories of the leading institutes in optics, photonics and laser physics of the Russian Academy of Sciences. In December of 2015, one MEPhI Master student visited IO UR for one month for a research project with results presented later at a MEPhI conference. Samples prepared by MEPhI researchers are used in IO students teaching laboratories. One Master student from MEPhI is working now towards the Master's degree at the IO UR. In this paper benefits and pitfalls of a cross-border collaboration are discussed as well as different directions of such a collaboration to provide a high-quality specialization for the students of the 21 century which includes international cooperation.
German-Chinese cooperative Bachelor in engineering physics/optoelectronics
Author(s):
Michael Wick;
Gerhard Lindner;
Katja Zimmer;
Jihong Zheng;
Boqing Xu;
Ning Wang;
Rupert Schreiner;
Thomas Fuhrmann;
Gudrun Seebauer
Show Abstract
The University of Shanghai for Science and Technology (USST), the Coburg University of Applied Sciences and Arts (CUASA) and the OTH Regensburg, University of Applied Sciences (OTHR) established an English taught international cooperative bachelor program in the area of Engineering Physics/Optoelectronics. Students from China study their first four semesters at USST. They continue their studies in Germany for the last three semesters, including an internship and a bachelor thesis, graduating with a Chinese and a German bachelor degree. Students from Germany study their third and fourth semester at USST to gain international experience. While the first cohort of Chinese students is currently in Germany, the second cohort of German students is in Shanghai. Up to now the feedback regarding this study program is completely positive, thus it is planned to develop it further.
Open innovation at the Abbe School of Photonics
Author(s):
Christian Helgert;
Reinhard Geiss;
Stefan Nolte;
Falk Eilenberger;
David Zakoth;
Oliver Mauroner;
Thomas Pertsch
Show Abstract
The Abbe School of Photonics (ASP) provides and coordinates the optics and photonics education of graduate and doctoral students at the Friedrich Schiller University in Jena, Germany. The internationalized Master’s degree program is the key activity in training students in the optical sciences. The program is designed to provide them with the skills necessary to fill challenging positions in industry and academia. Here, an essential factor is ASP’s close collaboration with more than 20 German photonics companies. To sustain these partners’ future economic development, the availability of highly qualified employees is constantly required. Accordingly, these industrial partners, the European Union, the local state and the federal German government are strongly involved in the sustainable development of ASP’s curriculum by both conceptual and financial engagements. The main goal is to promote the students’ academic careers and job experience in the photonics industry as well as in academia. To open up the program to students from all over the world, all ASP lectures and courses are taught in English. ASP’s qualification strategy is fully research-oriented and based on the principles of academic freedom, competitive research conditions and internationalization at all levels. The education program is complemented by a structured doctoral student support and a prestigious guest professorship program. Recently, ASP and partners have started a project to build an open photonics laboratory in order to foster innovative and co-creative processes. The idea follows well-established open innovation schemes e.g. in electronics. This Photon Garage (German: “Lichtwerkstatt”) will bring together professionals and interested laymen from different backgrounds to approach pertinent challenges in photonics. Here, we will share our latest insights into the potentials and opportunities offered by this novel educative approach.
The role of Chinese National Steering Committee of Optics and Photonics (CNSCOP)
Author(s):
Xu Liu;
Baozhen Ge;
Shiqiao Qin;
Xiangdong Liu;
Xiaojie Zhang;
Yaocheng Shi
Show Abstract
The Chinese National Steering Committee of Optics and Photonics (CNSCOP) is appointed by the ministry of education of China. The members of the committee are selected from 18 representative domestic Universities, 4 Chinese Academic Institutes and major enterprises. Through designing National high education standards for optic and Photonics; establishing Teacher’s training Center; Organizing National annual conference on Optics and Photonics education; setting up the Optics and Photonics Teaching Resource Sharing Platform etc., the CNSCOP has developed many process in order to improve the Chinese optical education quality and to promote the high achievements of students for whole country. In this paper, we will give brief introduction of all these activities.
Teaching physics and understanding infrared thermal imaging
Author(s):
Michael Vollmer;
Klaus-Peter Möllmann
Show Abstract
Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.
Engaging colleagues in active learning pedagogies through mentoring and co-design
Author(s):
Rhys Adams;
Kevin Lenton
Show Abstract
When implemented correctly, active learning pedagogies increase student engagement with discipline content. In addition, there is accumulating evidence that they also positively impact the learning of this content. This is particularly relevant for teaching science disciplines because many students perceive science as being difficult to fully understand. However, an ongoing problem is that instructors have difficulty implementing active learning pedagogies effectively and therefore see no benefit to it. Without persistence or guidance, instructors can become discouraged and return to a more traditional style of teaching. We report on how the Faculty of Science at Vanier College is getting more instructors to engage in active learning pedagogies through mentoring and activity co-design.
Photonics education development for electrical engineering students
Author(s):
Yang Cao;
Yuan Luo;
Yu Liu;
ZhangFang Hu;
Xuemei Cai
Show Abstract
We describe the contents of an advanced undergraduate course on photonics at School of Electrical Engineering, Chongqing University of Posts and Telecommunications. The main goal of the course is to equip the student with the necessary theoretical and practical knowledge to participate in photonics-related industry and further graduate level study and research if they choose. The prerequisites include college-level physics and higher mathematics which a general engineering student has already had in his/her first and second year college study. Although applications of photonics are ubiquitous such as telecommunications, photonic computing, spectroscopy, military technology, and biophotonics etc. Telecommunication information system application is more emphasized in our course considering about the potential job chances for our students.
Quantum optics and nano-optics teaching laboratory for the undergraduate curriculum: teaching quantum mechanics and nano-physics with photon counting instrumentation
Author(s):
Svetlana G. Lukishova
Show Abstract
At the Institute of Optics, University of Rochester (UR), we have adapted to the main challenge (the lack of space in the curriculum) by developing a series of modular 3-hour experiments and 20-min-demonstrations based on technical elective, 4-credit-hour laboratory course “Quantum Optics and Nano-Optics Laboratory” (OPT 253/OPT453/PHY434), that were incorporated into a number of required courses ranging from freshman to senior level. Rochester Monroe Community College (MCC) students also benefited from this facility that was supported by four NSF grants. MCC students carried out two 3-hour labs on photon quantum mechanics at the UR. Since 2006, total 566 students passed through the labs with lab reports submission (including 144 MCC students) and more than 250 students through lab demonstrations. In basic class OPT 253, four teaching labs were prepared on generation and characterization of entangled and single (antibunched) photons demonstrating the laws of quantum mechanics: (1) entanglement and Bell’s inequalities, (2) single-photon interference (Young’s double slit experiment and Mach-Zehnder interferometer), (3) confocal microscope imaging of single-emitter (colloidal nanocrystal quantum dots and NV-center nanodiamonds) fluorescence within photonic (liquid crystal photonic bandgap microcavities) or plasmonic (gold bowtie nanoantennas) nanostructures, (4) Hanbury Brown and Twiss setup. Fluorescence antibunching from nanoemitters. Students also carried out measurements of nanodiamond topography using atomic force microscopy and prepared photonic bandgap materials from cholesteric liquid crystals. Manuals, student reports, presentations, lecture materials and quizzes, as well as some NSF grants’ reports are placed on a website http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ . In 2011 UR hosted 6 professors from different US universities in three-days training of these experiments participating in the Immersion Program of the Advanced Laboratory Physics Association.
Curriculum optimization of College of Optical Science and Engineering
Author(s):
Xiaoping Wang;
Zhenrong Zheng;
Kaiwei Wang;
Xiaodong Zheng;
Song Ye;
Yuhui Zhu
Show Abstract
The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of “optoelectronics + X”, according to their individual strengths and preferences.
Teach students Semiconductor Lasers according to their natural ability
Author(s):
Ken Liu;
Chu Cai Guo;
Jian Fa Zhang
Show Abstract
Physics explain the world in strict rules. And with these rules, modern machines and electronic devices with exact operation manner have been developed. However, human beings exceed these machines with self-awareness. To treat these self-awareness students as machines to learn strict rules, or to teach these students according to their aptitude? We choose the latter, because the first kind of teaching would let students lose their individual thoughts and natural ability. In this paper we describe the individualized teaching of “semiconductor lasers”.
Flipping the Electromagnetic Theory classroom
Author(s):
Andrew J. Berger
Show Abstract
Electromagnetic Theory is a required junior-year course for Optics majors at the University of Rochester. This foundational course gives students their first rigorous exposure to electromagnetic vector fields, dipole radiation patterns, Fresnel reflection/transmission coefficients, waveguided modes, Jones vectors, waveplates, birefringence, and the Lorentz model of refractive index.
To increase the percentage of class time devoted to student-centered conceptual reasoning and instructor feedback, this course was recently “flipped”. Nearly all of the mathematically-intensive derivations were converted to narrated screencasts (“Khan Academy” style) and made available to students through the course’s learning management system. On average, the students were assigned two 10-15 minute videos to watch in advance of each lecture. An electronic survey after each tutorial encouraged reflection and counted towards the student’s participation grade. Over the past three years, students have consistently rated the videos as being highly valuable.
This presentation will discuss the technical aspects of creating tutorial videos and the educational tradeoffs of flipping a mathematically-intensive upper-level course. The most important advantage is the instructor’s increased ability to identify and respond to student confusion, via activities that would consume too much time in a lecture-centered course. Several examples of such activities will be given. Two pitfalls to avoid are the temptation for the instructor not to update the videos from year to year and the tendency of students not to take lecture notes while watching the videos.
Evolution of National University Students' Optical-Science-Technology competition in China
Author(s):
Xu Liu;
XiangDong Liu;
XiaoPing Wang;
XiaoDong Zheng;
YuanFang Lin;
Kaiwei Wang
Show Abstract
The goal of National University Students’ Optical-Science-Technology Competition (NUSOSTC) is to provide a nation-wide platform for students from the colleges and universities, which have majors in the field of optics and photonics, to communicate and learning each other. Meanwhile, it works on pushing forward the popularity of optoelectronic knowledge, cultivating the students' teamwork and innovation ability, promoting higher education personnel training mode and practice teaching reform, and then improving the quality of talent training. The founding, organizational structure development and overall organizational arrangements of NUSOSTC were introduced in this paper. Besides, the competition logo, theme, title, final date, numbers of participating universities, undertaking universities and cities of the five NUSOSTCs held during 2008 to 2016 and the progress had been made were given in detail.
Open source 3D printers: an appropriate technology for building low cost optics labs for the developing communities
Author(s):
J. Gwamuri;
Joshua M. Pearce
Show Abstract
The recent introduction of RepRap (self-replicating rapid prototyper) 3-D printers and the resultant open source technological improvements have resulted in affordable 3-D printing, enabling low-cost distributed manufacturing for individuals. This development and others such as the rise of open source-appropriate technology (OSAT) and solar powered 3-D printing are moving 3-D printing from an industry based technology to one that could be used in the developing world for sustainable development. In this paper, we explore some specific technological improvements and how distributed manufacturing with open-source 3-D printing can be used to provide open-source 3-D printable optics components for developing world communities through the ability to print less expensive and customized products. This paper presents an open-source low cost optical equipment library which enables relatively easily adapted customizable designs with the potential of changing the way optics is taught in resource constraint communities. The study shows that this method of scientific hardware development has a potential to enables a much broader audience to participate in optical experimentation both as research and teaching platforms. Conclusions on the technical viability of 3-D printing to assist in development and recommendations on how developing communities can fully exploit this technology to improve the learning of optics through hands-on methods have been outlined.
Cage structure application in photoelectric experiment and teaching
Author(s):
Xiufang Li;
Peng Zhao;
Shugang Liu
Show Abstract
A new type of photoelectric system structure, cage system, is introduced. This kind of coaxial modularized structure not only can be quickly assembled, but also can easily realize different purposes by substituting elements in the system. In addition, it’s light and portable, which enable teachers to carry it to wherever suitable for teaching. In conclusion, this structure can improve teaching effect and stimulate student’s interest in photoelectric courses.
A simple student laboratory practice for the study of light scattering by cylindrical bodies
Author(s):
Toto Mabiala Masiala;
Edmond Phuku Phuati;
B. Albert Kazadi Mukenga
Show Abstract
The study of light scattering by cylindrical bodies is of great importance in many aspects, but most of the time; it is studied in a very theoretical manner. In that work, we present a simple manner to study scattering of light by cylindrical bodies. The method combines the use of a simple experimental set-up using a He-Ne laser as a source, a circular paper screen, and the use of a simple code for simulation using the Lorentz-Mie formalism. In that way, the student can compare the experimental results with the simulation. They can qualitatively notice the difference of the behavior of scattering by a low-loss dielectric cylinder, a metallic cylinder, and an absorbing cylinder. Simulation can help students to follow the evolution of the scattering regime when the relative diameter of the cylinder, with respect to the incident wavelength, changes. A focus is stressed especially when the radius becomes far below the wavelength.
Applied Electronics and Optical Laboratory: an optimized practical course for comprehensive training on optics and electronics
Author(s):
Kaiwei Wang;
Xiaoping Wang
Show Abstract
In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of “Applied Optoelectronics Laboratory” has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.
Engaging college physics students with photonics research
Author(s):
Rhys Adams;
Lawrence R. Chen
Show Abstract
As educators and researchers in the field of photonics, we find what we do to be very exciting, and sharing this passion and excitement to our university students is natural to us. Via outreach programs and college research funding, a new college and university collaboration has broadened our student audience: photonics is brought into the college classroom and research opportunities are provided to college students. Photonics-themed active learning activities are conducted in the college Waves and Modern Physics class, helping students forge relationships between course content and modern communications technologies. Presentations on photonics research are prepared and presented by the professor and past college student-researchers. The students are then given a full tour of the photonics university laboratories. Furthermore, funds are set aside to give college students a unique opportunity to assist the college professor with experiments during a paid summer research internship.
Cultivation of students' engineering designing ability based on optoelectronic system course project
Author(s):
Danhua Cao;
Yubin Wu;
Jingping Li
Show Abstract
We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.
Training program developed for senior undergraduates majoring in optical communication
Author(s):
Sheng Cui;
Xinliang Zhang;
Changjian Ke
Show Abstract
Based on the well-known simulation software VPI TransmissionMaker, a comprehensive training program for senior undergraduates majoring in optical communication and optical network technology was developed by the author after detailed study of the teaching difficult and key points in the discipline. Aiming at solving practical scientific and engineering problems, the program helped our students to develop the ability of acquiring and applying knowledge by designing optical devices, optical signal processing algorithms and optical fiber communication systems. Furthermore, innovation is inspired by introducing competition mechanism among project teams. The program was validated through four years of use and achieved good results.
Teaching practice and reform of the cultivation of excellent engineer based on the idea of engineering education
Author(s):
Hanxin Shen;
Feibing Xiong;
Zhangchao Huang;
Zijun Bai
Show Abstract
How to realize the joint cultivation of excellent engineer for the school and the enterprise is an important task of the project of excellent engineers. In five years of teaching practice, based on the concept of engineering education certification, through target management of school and enterprise, cultural fusion, stage implementation and feedback, excellent engineer education training plan of opto-electronic specialty is being implemented. It standardizes the specialty construction and practice and explores new teaching management mode, which gets the recognition of graduates and enterprises and achieves a win-win situation for school and enterprise.
Exploration on teaching reform of theory curriculum for engineering specialties
Author(s):
Yan Zhang;
Wei-min Shen;
Chang-yu Shen;
Chen-xia Li;
Xu-feng Jing;
Jun Lou;
Yan Shi;
Shang-zhong Jin
Show Abstract
The orientation of talents cultivation for local colleges is to train engineering application-oriented talents, so the exploration and practice on teaching reform of theory curriculum was carried out. We restructured the knowledge units basing on numerical solution problems, and chose the software to build algorithm models for improving the analytical and designed ability. Relying on micro video lessons platform, the teacher-student interaction was expanded from class to outside. Also, we programmed new experimental homework, which was suited for process evaluation. The new teaching mode has achieved good effect, and the students' application ability was significantly improved.
Stereoscopic construction and practice of optoelectronic technology textbook
Author(s):
Zigang Zhou;
Jinlong Zhang;
Huili Wang;
Yongjia Yang;
Yanling Han
Show Abstract
It is a professional degree course textbook for the Nation-class Specialty—Optoelectronic Information Science and Engineering, and it is also an engineering practice textbook for the cultivation of photoelectric excellent engineers. The book seeks to comprehensively introduce the theoretical and applied basis of optoelectronic technology, and it’s closely linked to the current development of optoelectronic industry frontier and made up of following core contents, including the laser source, the light's transmission, modulation, detection, imaging and display. At the same time, it also embodies the features of the source of laser, the transmission of the waveguide, the electronic means and the optical processing methods.
On the structural logic of curriculum system for the optical instrument major
Author(s):
Yufeng Yan;
Juncen Yan;
Yang Li;
Lixia Shi
Show Abstract
The theories of optical instrument are the Interdisciplinary of Optical Engineering and Instrument Science and Technology. The undergraduates should study the knowledge about the optics, precision machine and electronics. The courses such as Theory of Machine, Engineering Optics, even include some courses about Accuracy Analysis of Instrument are offered in the college. There are a lot of correlatives among these courses. This paper focuses on the structural logic of these courses. The order of these courses is researched, The aims of all the courses are clear completely to avoid the same topics to be taught twice in different courses. Therefore, the undergraduates would get the main line of the knowledge, and the professors would teach efficiently.
Design and practice of a comprehensively functional integrated management information system for major construction
Author(s):
Yuling Liu;
Xiaoping Wang;
Yuhui Zhu;
Lanlan Fei
Show Abstract
This paper introduces a Comprehensively Functional Integrated Management Information System designed for the Optical Engineering Major by the College of Optical Science and Engineering, Zhejiang University, which combines the functions of teaching, students learning, educational assessment and management. The system consists of 5 modules, major overview, online curriculum, experiment teaching management, graduation project management and teaching quality feedback. The major overview module introduces the development history, training program, curriculums and experiment syllabus and teaching achievements of optical engineering major in Zhejiang University. The Management Information System is convenient for students to learn in a mobile and personalized way. The online curriculum module makes it very easy for teachers to setup a website for new curriculums. On the website, teachers can help students on their problems about the curriculums in time and collect their homework online. The experiment teaching management module and the graduation project management module enables the students to fulfill their experiment process and graduation thesis under the help of their supervisors. Before students take an experiment in the lab, they must pass the pre-experiment quiz on the corresponding module. After the experiment, students need to submit the experiment report to the web server. Moreover, the module contains experiment process video recordings, which are very helpful to improve the effect of the experiment education. The management of the entire process of a student’s graduation program, including the project selection, mid-term inspection, progress report of every two weeks, final thesis, et al, is completed by the graduation project management module. The teaching quality feedback module is not only helpful for teachers to know whether the education effect of curriculum is good or not, but also helpful for the administrators of the college to know whether the design of syllabus is reasonable or not. The Management Information System changes the management object from the education results to the entire education processes. And it improves the efficiency of the management. It provides an effective method to promote curriculum construction management by supervision and evaluation, which improves students’ learning outcomes and the quality of curriculums. As a result, it promotes the quality system of education obviously.
New approaches in teaching spectroscopy technique and application classes: history, experiments and frontier lectures
Author(s):
Qing Yang;
Minghua Zhuge;
Bo Yuan
Show Abstract
Spectroscopy has a long history. The theory of is difficult for students to understand. So we want to improve the traditional teaching to some way of interesting experience combined with historical knowledge, practical application and development frontiers. We make use of all kinds of resources to get vivid information of big events of spectroscopy development in order to show students the specific process of some phenomenon. Meanwhile, students will be suggested to read all kinds of latest papers relevantly to obtain much more information about this discipline. Both in class and in lab, we lead students to do some very useful experiments and give them guidance. Through this practice, they will understand the theory much more deeply, especially they will know how to solve the problems in research.
Study of research-based teaching mode in the course of Geometric Optics and Optical Instruments
Author(s):
Zefeng Wang;
Meihua Geng;
Xiangai Cheng;
Zongfu Jiang
Show Abstract
Modern teaching opinions require research-based teaching mode in research universities. It is an advanced teaching mode enabling students to explore science and technology autonomously. It has a lot of advantages comparing with the conventional knowledge-oriented teaching mode. In this paper, we show some understanding of research-based teaching mode. And based on the course features of Geometric optics and optical instruments and characteristics of students, we explore the research-based teaching mode in the part of Practical Optical Systems.
Research on the teaching method based on cultivating interest
Author(s):
Yang Zheng;
Jiangping Zheng
Show Abstract
It is a very effective studying method to cultivate the students’ interest, but the key is how to make the students interested in the content of the learning. This paper researches a teaching method of the reversal mode. The method is to let a student to play the role of the teacher, however, the teacher is to be a student. It can make the students get knowledge very well by themselves and give full play to their potential and the subjective initiative. Compared with the previous conventional teaching, the students master the knowledge points more clearly. This method is real and effective, we get good results through a semester of teaching.
IMI's teaching design, feedback system and its localization
Author(s):
Tingting Wen;
Xuexin Zhang
Show Abstract
In Britain, the Institute of the Motor Industry (IMI) sets the National Occupational Standards for all sectors of the automotive industry. The IMI certificate and associated training programs are well recognized for its high quality both in the United Kingdom (UK) and internationally.
Using China’s first groups studying IMI Level 3 certificate for teachers and Level 2 certificate for students as a sample, we analyzed the seven central aspects in IMI teaching, namely, assessment standard, environment, method, content, procedure, quality control and feedback. We then proposed strategies and guidelines for its localization in China, which would be particularly important for the establishment and expansion of IMI centers.
A simple method for processing data with least square method
Author(s):
Chunyan Wang;
Liqun Qi;
Yongxiang Chen;
Guangning Pang
Show Abstract
The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.
Blue sun reflected from water: optical lessons from observations of nature
Author(s):
Joseph A. Shaw;
Michael Vollmer
Show Abstract
Specular reflections of the sun from a wind-rippled water surface combine to form a glitter pattern. These reflections are expected to not alter the perceived color of the sun (or other light source), but when the light is reflected near the Brewster angle, the highly polarized glints can appear blue when observed through a polarizer or polarizing sun glasses. This blue appearance is a result of blue light leakage through a standard film polarizer oriented orthogonal to the plane of polarization of the reflected light. Measurements are shown of crossed-polarizer transmission spectra exhibiting blue and near infrared light leakage for photographic polarizing filters and polarized sunglasses. A variety of photographs are shown to confirm blue light leakage as the source of the blue glint color.
A demonstration of particle duality of light
Author(s):
Haili Jiang;
Zhihai Liu;
Qiuhua Sun;
Yancheng Zhao
Show Abstract
The need of understanding and teaching about wave-particle duality if light with gets more and more apparent in the background of the attention of modern physics. As early as the beginning of twentieth Century, Einstein dared to "deny" the development of a very perfect light electromagnetic theory, so that the quantum of light can be developed. In 1924, De Broglie put forward wave-particle duality if light to other micro particles and the concept of matter wave, pointed out that all micro particle has wave-particle duality. This is a very abstract concept for students, most college physics teaching all lack of demonstration about particle duality of light. The present article aims to contribute to demonstrate the wave-particle duality of light at the same time using a simple way based on fiber optical tweezers. It is hoped that useful lesson can be absorbed so that students can deepen the understanding of the particle and wave properties of light. To complement the demonstration experiment for this attribute light has momentum.
To make a further explanation on some questions about optical imaging using a light field camera
Author(s):
Yun Fu;
Xiping Xu;
Peng Yin
Show Abstract
In traditional optics, the focusing should be done before the exposuring. However, a light field camera makes it a reality to take a photograph before the focusing. The principle of a light field camera consists of some fundamental theories on optical imaging, including pinhole imaging, depth of focus, digital refocusing, synthetic aperture imaging, etc. It is easier for students to understand the above theories through learning the theory and experiment of a light field camera. Meanwhile it also involves some optical knowledge for a light field camera during the acquisition and processing images. In the paper, we will discuss the similarities and differences on optical properties among the pinhole, the convex lens and the light field camera. Our intention is to make these optical theories much easier to understand for students in our teaching work.
Teaching practice of the course of Laser Principle and Application based on PBL mode
Author(s):
Yongliang Li;
Beibei Lv;
Siqi Wang
Show Abstract
The primary task of university education is to stimulate students’ autonomic learning and cultivate students' creative thinking. This paper put to use problem based learning (PBL) teaching mode, to enable students master flexible knowledge as the goal, and a detailed analysis of the implementation method and concrete measures of PBL teaching reform in the course of Laser Principle and Application, then compared with the former teaching methods. From the feedback of students and teaching experience, we get good teaching effect and prove the feasibility of PBL teaching mode in practice.
An optoelectronic detecting based environment perception experiment for primer students using multiple-layer laser scanner
Author(s):
Shifeng Wang;
Rui Wang;
Pengfei Zhang;
Xiang Dai;
Dawei Gong
Show Abstract
One of the motivations of OptoBot Lab is to train primer students into qualified engineers or researchers. The series training programs have been designed by supervisors and implemented with tutoring for students to test and practice their knowledge from textbooks. An environment perception experiment using a 32 layers laser scanner is described in this paper. The training program design and laboratory operation is introduced. The four parts of the experiments which are preparation, sensor calibration, 3D space reconstruction, and object recognition, are the participating students’ main tasks for different teams. This entire program is one of the series training programs that play significant role in establishing solid research skill foundation for opto-electronic students.
Research summer camp in photonics
Author(s):
Elizaveta Buyanovskaya;
Maksim Melnik;
Vladimir Egorov;
Artur Gleim;
Svetlana Lukishova;
Sergei Kozlov;
Xi-Cheng Zhang
Show Abstract
ITMO University and the University of Rochester became close partners several years ago. One of the first outcomes of this mutually beneficial partnership was the creation of International Institute of Photonics and Optical Information Technologies led by Prof. Sergei Kozlov and Prof. Xi-Cheng Zhang. Universities have created a double Masters-degree program in optics in 2014, and several ITMO students have been awarded degrees from Rochester. At the same time ITMO University organizes Summer Research camp in Photonics for University of Rochester students. Students spent two weeks in the Northern Capital of Russia learning about the emerging practical applications of femtosecond optics, terahertz biomedicine and quantum information technologies.
Teaching the concept of dispersion by diffraction of light to elementary school students
Author(s):
J. Resnick;
F. A. Monroy-Ramírez
Show Abstract
This paper discusses the development and implementation of a practice based on Active Learning Methodology (
ALM) with the aim of encouraging students from an early age to be interested in the world of science. The practical proposal is registered in the area of physics, especially in the field of wave optics, since it turns out to be very attractive to all ages especially for children.
This didactic sequence was developed with students from elementary school. The experimental sequence developed is composed by several experimental activities allowing to observe and describe the phenomenon of diffraction scattering, from the entering of light through a piece of compact disc (
CD) which acts as a diffraction grating. The distance between the diffraction grating and the screen on which the maximum intensity markers are projected remains constant throughout the practice. Children light up the
CD with a red pointer, mark on the screen the position of the different maximum intensity markers, then repeat with the green pointer and finally with blue; from observation and the answer of guiding questions proposed by the teacher, they begin to draw conclusions to diffraction for each wavelength. In this way, the child observes that the maximum intensity markers (diffraction orders) associated with each color are located in different positions. Later, children are enquired about the result of the process when it is repeated with white light. Immediately afterwards, the experiment is tried with white light to check it. Finally, comparing the results observed with pointers in different colors with the result out of the practice with white light, a relevant discussion starts, bringing students to the concept of diffraction scattering.
An important aspect is that the materials used in this experiment represents an important advantage in their application, since they are easily accessible (except for laser pointers in colors that are not very common in some places), so it is a practice affordable to any socioeconomic population besides being very striking to students.
Bringing optics to Fab Labs in Europe
Author(s):
Aurèle Adam;
Thim Zuidwijk;
Paul Urbach
Show Abstract
The Optics Group of Delft University of Technology plays a major role in teaching optics to bachelor and master students. In addition, the group has a long record of introducing, demonstrating and teaching optics to quite diverse groups of people from outside of the university. We will describe some of these activities and focus on a recently started project funded by the European Commission called Phablabs 4.0, which aims to bring photonics to European Fab labs.
LCoS-SLM technology based on Digital Electro-optics Platform and using in dynamic optics for application development
Author(s):
Chun-Wei Tsai;
Chen Wang;
Bo-Han Lyu;
Chen-Hsien Chu
Show Abstract
Digital Electro-optics Platform is the main concept of Jasper Display Corp. (JDC) to develop various applications. These applications are based on our X-on-Silicon technologies, for example, X-on-Silicon technologies could be used on Liquid Crystal on Silicon (LCoS), Micro Light-Emitting Diode on Silicon (μLEDoS), Organic Light-Emitting Diode on Silicon (OLEDoS), and Cell on Silicon (CELLoS), etc. LCoS technology is applied to Spatial Light Modulator (SLM), Dynamic Optics, Wavelength Selective Switch (WSS), Holographic Display, Microscopy, Bio-tech, 3D Printing and Adaptive Optics, etc. In addition, μLEDoS technology is applied to Augmented Reality (AR), Head Up Display (HUD), Head-mounted Display (HMD), and Wearable Devices. Liquid Crystal on Silicon – Spatial Light Modulator (LCoSSLM) based on JDC’s On-Silicon technology for both amplitude and phase modulation, have an expanding role in several optical areas where light control on a pixel-by-pixel basis is critical for optimum system performance. Combination of the advantage of hardware and software, we can establish a “dynamic optics” for the above applications or more. Moreover, through the software operation, we can control the light more flexible and easily as programmable light processor.
Simulation and visualization of fundamental optics phenomenon by LabVIEW
Author(s):
Bohan Lyu
Show Abstract
Most instructors teach complex phenomenon by equation and static illustration without interactive multimedia. Students usually memorize phenomenon by taking note. However, only note or complex formula can not make user visualize the phenomenon of the photonics system. LabVIEW is a good tool for in automatic measurement. However, the simplicity of coding in LabVIEW makes it not only suit for automatic measurement, but also suitable for simulation and visualization of fundamental optics phenomenon. In this paper, five simple optics phenomenon will be discuss and simulation with LabVIEW. They are Snell’s Law, Hermite-Gaussian beam transverse mode, square and circular aperture diffraction, polarization wave and Poincare sphere, and finally Fabry-Perrot etalon in spectrum domain.
Exploration of offering photoelectric experimental general elective courses for college students of science and technology
Author(s):
Shen Tao;
Binchao Sun
Show Abstract
The necessity of offering photoelectric experiment general elective courses, such as the experiments of modern optical and innovational photoelectric design for non optic-electric’s science and engineering students were discussed based on the analysis of the status quo and problems in experimental general elective course in science and engineering colleges of our country. And the characters of photoelectric disciplines, the goal of science and engineering quality-oriented education and the reform of science education at home and abroad were also considered. The instructional objectives, contents and characteristics of the courses were investigated. The specific methods, the CDIO (conceive, design, implement and operate) mode in the general courses has been proposed; the experiences and practical effects of offering these courses were concluded.
Photoelectric professional students in common universities cultivate way to explore under the background of professional certification
Author(s):
Yan-jun Sun;
Li Wang;
Yan-bing Leng
Show Abstract
In view of the engineering education professional certification of specialty construction and the specific requirements of the training system, combining with our school optoelectronic information science and engineering characteristics, analysis of the optoelectronic information science and engineering in our school problems and challenges, to locate the specific professional training objectives. From the service oriented industry demand for talent ability, at the same time, according to the ministry of education professional norms of the development of the photoelectric teaching steering committee, and the professional development and the characteristics of target, to build a set to conform to the goal of cultivating the professional curriculum system. At the same time set up a from fundamental to professional practice teaching system, covers the course experiment, course design, case teaching, comprehensive training, such as graduation design practice. Which implements a whole ability training from the practice of foundation to high-end chain, embodies the training goal emphasize "outstanding practical skills, quality education is distinct culture characteristic. By further speed up the professional construction, professional certification standards to standardize our training process, improved the level of professional training, and improve the comprehensive quality of the graduates and talent of social competitiveness, fostered more professional talents for the country.
Study on diversified cultivation orientation and pattern of optoelectronic major undergraduates
Author(s):
Zhiying Liu
Show Abstract
To improve the research quality preparation for graduate study and looking for job competition ability of undergraduates students, the education orientation objective need to be explicit. Universities need develop undergraduates' cultivation plan according to students' classification. Based on analysis of students export characteristic, there will be corresponding cultivation plan.
Keep tracking study during the cultivation plan implantation process, the Curriculum system and related manage documents are revised corresponding to exist problems. There are mainly three kinds of undergraduates' career direction plan for opto-electronic major undergraduates. In addition to the vast majority university graduates opting for direct employment, nearly one third of university students choose to take part in the postgraduate entrance exams and other further education abroad, and also one-tenth choose their own businesses, university chooses are diversified.
The exports are further studying as graduates, working and study abroad. Because national defense students are also recruited, the cultivation plan will be diversified to four types. For students, who go to work directly after graduation, the "Excellence engineers plan" is implemented to enhance their practice ability. For students, who will study further as graduate student, the scientific innovation research ability cultivation is paid more attention to make good foundation for their subsequent development. For students, who want to study abroad after graduation, the bilingual teaching method is introduced, and the English environment is built. We asked foreign professionals to give lectures for students. The knowledge range is extending, and the exchange and cooperation chance is provided at the same time. And the cultivation plan is revised during docking with Universities abroad. For national defense students, combat training and other defense theory courses are added to make them familiar with force knowledge. And with national defense students’ excellence engineer plan, more army practice chance is provided. The students can integrate into army life much faster. The advantages of national defense students are much more highlighted. The graduates can serve motherland better than before. It is shown from the practice process that the revised cultivation plan is suitable for diversified undergraduates. And the education result is improved in a large amount consequently.
The exploration and practice of integrated innovation teaching mode in the Applied Optics course
Author(s):
Dongmei Liu;
Huifu Zhao;
Xiuhua Fu;
Jing Zhang
Show Abstract
In recent years, the Ministry of Education of China attaches great importance to the reform of higher education quality. As an important link in the reform of higher education, curriculum development is bound to promote the development of "quality-centered connotative education". Zhejiang University, Changchun University of Science and Technology, Southern Airlines University and other colleges and universities carried out a full range of close cooperation, proposed integrated innovation teaching mode of the course based on network technology. Based on this model, the course of "Applied Optics" has been practiced for two years. The results show that the integrated innovation teaching mode can fully realize the integration amplification effect among multiple colleges and universities and the depth sharing all types of resources. Based on the principle of co-building and sharing, mutual help, comprehensively improve the teaching quality of domestic related courses and promote the comprehensive development of the curriculum to meet the needs of learning society.
Teaching autonomy: turning the teaching evaluation of the Applied Optics course from impart knowledge to the new intelligent thinking
Author(s):
Huifu Zhao;
Yu Chen;
Dongmei Liu
Show Abstract
There is a saying that “The teacher, proselytizes instructs dispels doubt.” Traditional teaching methods, constantly let the students learn the knowledge in order to pursue the knowledge of a solid grasp, then assess the teaching result by evaluating of the degree of knowledge and memory. This approach cannot mobilize the enthusiasm of students to learn, and hinders the development of innovative thinking of students. And this assessment results have no practical significance, decoupling from practical application. As we all know, the course of Applied Optics is based on abstract theory. If the same teaching methods using for this course by such a "duck", it is unable to mobilize students' learning initiative, and then students’ study results will be affected by passive acceptance of knowledge. How to take the initiative to acquire knowledge in the class to the students, and fully mobilize the initiative of students and to explore the potential of students, finally evaluation contents more research on the practical significance? Scholars continue to innovate teaching methods, as well as teaching evaluation indicators, the best teaching effect to promote the development of students. Therefore, this paper puts forward a set of teaching evaluation model of teaching autonomy.
This so-called "autonomous teaching" is that teachers put forward the request or arrange the task and students complete the learning content in the form of a group to discuss learning before the lesson, and to complete the task of the layout, then teachers accept of students' learning achievements and answer questions. Every task is designed to evaluate the effectiveness of teaching. Every lesson should be combined with the progress of science and technology frontier of Applied Optics, let students understand the relationship between research and application in the future, mobilize the students interest in learning, training ability, learn to take the initiative to explore, team cooperation ability. As well, it has practical significance to every evaluation, making the teaching to active learning in teaching, cultivating students' creative potential, deep, solid foundation for the day after learning work.
To promote the engineering innovative abilities of undergraduates by taking projects as the guidance and competitions as the promotion
Author(s):
Yishen Xu;
Di Wu;
Daqing Chen;
Jihua Gu;
Lei Gao
Show Abstract
According to the inherent requirements of education for talents' knowledge, quality and comprehensive ability and the major training goals of optoelectronics information science and engineering, in order to enhance the undergraduates' comprehensive practical ability and consciousness of innovation, we carried out the reforms of teaching method and teaching mode, which took the training programs of innovation and entrepreneurship for undergraduates, extracurricular academic research fund, "Chun-Tsung Scholar" program or research projects of their tutors as the guidance, and took the all levels of relevant discipline competitions as the promotion. And the training mainline of engineering innovation talents as "undergraduate's tutorial system →innovative training program or tutor’s research project →academic competition →graduation projects (thesis)" was constructed stage by stage by combining the undergraduates' graduation projects and their participated academic competition into one for improving the quality of the graduation projects (thesis). The practical results of the last several years illuminate that the proposed training model can effectively stimulate the students' awareness of autonomous learning, enhance their comprehensive ability of analyzing and solving problems and improve their ability of engineering practice and innovation as well as their teamwork spirit.
Remote-controlled optics experiment for supporting senior high school and undergraduate teaching
Author(s):
S. H. Choy;
K. L. Jim;
C. L. Mak;
C. W. Leung
Show Abstract
This paper reports the development of a remote laboratory (RemoteLab) platform for practising technologyenhanced learning of optics. The development of RemoteLab enhances students' understanding of experimental methodologies and outcomes, and enable students to conduct experiments everywhere at all times. While the initial goal of the system was for physics major undergradutes, the sytem was also made available for senior secondary school students. To gauge the impact of the RemoteLab, we evaluated two groups of students, which included 109 physics 1st-year undergraduates and 11 students from a local secondary school. After the experiments, evaluation including questionnaire survey and interviews were conducted to collect data on students' perceptions on RemoteLab and implementation issues related to the platform. The surveys focused on four main topics, including user interface, experiment setup, booking system and learning process. The survey results indicated that most of the participants’ views towards RemoteLab was positive.
Exploration and practice of the cultivation of optoelectronic innovative talents based on the Students Innovation Training Program
Author(s):
Bing Lei;
Wei Liu;
Jianhua Shi;
Tianfu Yao;
Wei Wang;
Haojun Hu
Show Abstract
The Students Innovation Training Program (SITP) has become an effective method to impel the teaching reform and improve undergraduate’s innovative practical ability in Chinese colleges and universities, which is quite helpful for students to understand the social requirement, to grasp the basic means of scientific research and to improve their innovative practical ability and team work spirit.
In this paper, three problems have been analyzed and discussed based on our organizing and instructing experience of SITP in recent years. Firstly, the SITP is a synthetically training project, and it is quite suitable to cultivate the students’ innovative practical ability. Because SITP is similar to the real scientific research activity, and both of them include the steps of project application, solution design, research implementation and project summary etc. By making great efforts to these basic training steps, the undergraduates’ innovative practical ability has been improved systemically. Secondly, a new talents cultivation system has been constructed based on SITP by integrating the subject competitions, graduation design and other conventional training activities, which is quite good to improve the training quality and decrease the total training class hours. Thirdly, a series of long-term effective operation and management guidelines have been established to ensure the SITP work normally, including doing a good job of project evaluation, setting up a reward and punishment system and creating a good atmosphere for innovation.
In conclusion, great efforts have been made to enhance undergraduates’ innovative ability, and the research results will provide useful reference for improving the training effects and reforming talents cultivating mode further.
Investigation, study and practice of optoelectronic MOOCs
Author(s):
Jianhua Shi;
Wei Liu;
Bing Lei;
Tianfu Yao;
Sihua Fu
Show Abstract
MOOC(Massive Open Online Course) is a new teaching model that has been springing up since 2012. The typical characters are short teaching video, massive learners, flexible place and time to study, etc. Although MOOC is very popular now, opto-electronic MOOCs are not much enough to meet the need of online learners. In this paper, the phylogeny, the current situation and the characters of MOOC were described, the most famous MOOCs’ websites, such as Udacity, Coursera, edX, Chinese College MOOC, xuetangx, were introduced, the opto-electronic MOOCs come from these famous MOOCs’ website were investigated extensively and studied deeply, the “Application of Opto-electronic Technology MOOC” which was established by our group is introduced, and some conclusions are obtained. These conclusions can give some suggestions to the online learners who are interested in opto-electronic and the teachers who are teaching the opto-electronic curriculums. The preparation of “Opto-electronic Technology MOOC” is described in short.
Exploration and practice for engineering innovative talents training based on project-driven
Author(s):
Yishen Xu;
Qingsong Lv;
Yan Ye;
Maocheng Wu;
Jihua Gu
Show Abstract
As one of the "excellent engineer education program" of the Ministry of Education and one of the characteristic majors of Jiangsu Province, the major of optoelectronic information science and engineering in Soochow University has a long history and distinctive features. In recent years, aiming to the talents training objective of "broad foundation, practiceoriented, to be creative", education and teaching reforms have been carried out, which emphasize basis of theoretical teaching, carrier of practical training, promotion of projects and discussion, and development of second class. By optimizing the teaching contents and course system of the theoretical courses, the engineering innovative talents training mode based on the project-driven has been implemented with playing a practical training carrier role and overall managing the second class teaching for cultivating students’ innovative spirit and practical ability. Meanwhile, the evaluation mechanism of the students' comprehensive performance mainly based on "scores of theory test" is being gradually changed, and the activities such as scientific research, discipline competitions and social practices are playing an increasing important role in the students' comprehensive assessment. The produced achievements show that the proposed training model based on project-driven could stimulate the students' enthusiasm and initiative to participate in research activities and promote the training of students' ability of engineering practice and consciousness of innovation.
Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform
Author(s):
Yan Ye;
Qingsong Lv;
Maocheng Wu;
Yishen Xu;
Jihua Gu
Show Abstract
In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.
The application of network teaching in applied optics teaching
Author(s):
Huifu Zhao;
Mingxu Piao;
Lin Li;
Dongmei Liu
Show Abstract
Network technology has become a creative tool of changing human productivity, the rapid development of it has brought profound changes to our learning, working and life. Network technology has many advantages such as rich contents, various forms, convenient retrieval, timely communication and efficient combination of resources. Network information resources have become the new education resources, get more and more application in the education, has now become the teaching and learning tools. Network teaching enriches the teaching contents, changes teaching process from the traditional knowledge explanation into the new teaching process by establishing situation, independence and cooperation in the network technology platform. The teacher's role has shifted from teaching in classroom to how to guide students to learn better. Network environment only provides a good platform for the teaching, we can get a better teaching effect only by constantly improve the teaching content.
Changchun university of science and technology introduced a BB teaching platform, on the platform, the whole optical classroom teaching and the classroom teaching can be improved. Teachers make assignments online, students learn independently offline or the group learned cooperatively, this expands the time and space of teaching. Teachers use hypertext form related knowledge of applied optics, rich cases and learning resources, set up the network interactive platform, homework submission system, message board, etc. The teaching platform simulated the learning interest of students and strengthens the interaction in the teaching.
The optical design of solar spectrograph
Author(s):
Yang Zhang;
Wen-Qiang Pan;
Xiang-Yue Meng;
Xian-Kui Lv;
Jie Feng;
Jia-Wei Zhu;
Xiao-Xiao Zhang;
Lei Li;
Wei-Ping Yang
Show Abstract
At the beginning of this paper, we simply describe the theories of spectrograph and the operating principle of grating. Based on the Spectrometer theory and optical theory we design a solar spectrograph by analyzing and calculating. And the working waveband of this solar spectrograph is between 510nm and 540nm. Besides, according to the design data, we ensure the blaze level of grating and the focal length of collimate. Due to the presence of the collimate in the optical structure, astigmatism exists in the system. For this reason, we add a cylindrical lens to the structure to correct. The optical system is characterized by using white-pupil design and folding light path to make the whole system simple. In the end, according to the calculated design parameters, we use the Zemax software for simulation, then the result is RMS only has 4μm at the 520nm. It’s worth nothing that the resolution merely near the reference wavelength (520nm)meets the design requirements.
Student project of optical system analysis API-library development
Author(s):
Tatiana Ivanova;
Tatiana Zhukova;
Ruslan Dantcaranov;
Maria Romanova;
Alexander Zhadin;
Vyacheslav Ivanov;
Olga Kalinkina
Show Abstract
In the paper API-library software developed by students of Applied and Computer Optics Department (ITMO University) for optical system design is presented. The library performs paraxial and real ray tracing, calculates 3d order (Seidel) aberration and real ray aberration of axis and non-axis beams (wave, lateral, longitudinal, coma, distortion etc.) and finally, approximate wave aberration by Zernike polynomials. Real aperture can be calculated by considering of real rays tracing failure on each surface. So far we assume optical system is centered, with spherical or 2d order aspherical surfaces. Optical glasses can be set directly by refraction index or by dispersion coefficients.
The library can be used for education or research purposes in optical system design area. It provides ready to use software functions for optical system simulation and analysis that developer can simply plug into their software development for different purposes, for example for some specific synthesis tasks or investigation of new optimization modes. In the paper we present an example of using the library for development of cemented doublet synthesis software based on Slusarev’s methodology. The library is used in optical system optimization recipes course for deep studying of optimization model and its application for optical system design.
Development of such software is an excellent experience for students and help to understanding optical image modeling and quality analysis. This development is organized as student group joint project. We try to organize it as a group in real research and development project, so each student has his own role in the project and then use whole library functionality in his own master or bachelor thesis. Working in such group gives students useful experience and opportunity to work as research and development engineer of scientific software in the future.
Adaption of the Michelson interferometer for a better understanding of the temporal coherence in lasers
Author(s):
M. A. Illarramendi;
J. Zubia;
J. Arrue;
I. Ayesta
Show Abstract
In this work, we show a design of a laboratory exercise in which a digital camera has been coupled to a Michelson interferometer based on free-propagation arms. By using the camera, our students measure the evolution of the interference patterns as a function of the difference between the optical paths of the arms. In this way, they obtain the corresponding reduction of the contrast of the fringes. The analysis of the results allows one to calculate the coherence length, and also to relate the temporal coherence of the employed laser with its spectral line profile. The exercise has been carried out with two lasers, which present different coherence lengths.
Experimental instruction in photonics for high school students: approaches to managing problems faced
Author(s):
Zhengyang Choong
Show Abstract
Student research projects are increasingly common at the K-12 level. However, students often face difficulties in the course of their school research projects such as setting realistic timelines and expectations, handling problems stemming from a lack of self-confidence, as well as being sufficiently disciplined for sustained communication and experimentation.
In this work, we explore manifestations of these problems in the context of a photonics project, characterising the spectrum of the breakdown flash from Silicon Avalanche Photodiodes. We report on the process of planning and building the setup, data collection, analysis and troubleshooting, as well as the technical and human problems at each step.
Approaches that were found to be helpful in managing the aforementioned problems are discussed, including an attention to detail during experimental work, as well as communicating in a forthcoming manner. e former allowed for clearer planning and the setting of quantifiable proximal goals; the latter helped in motivating discipline, and also helped in the understanding of research as an iterative learning process without a clear definition of success or failure.
An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges
Author(s):
Shijun Guo;
Jie Lyu;
Peiming Zhang
Show Abstract
In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed.
From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice.
From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching.
From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.
Effect of finite beam size on the spatial and spectral response of a Fabry-Perot interferometer
Author(s):
Ibon Aramburu;
Mikel Lujua;
Gotzon Madariaga;
María Asunción Illarramendi;
Joseba Zubia
Show Abstract
Fabry-Perot (F-P) interferometers are commonly studied in undergraduate textbooks. Their spectral transmittance profiles are usually analyzed assuming that a plane wave is incident on the interferometer. This wave undergoes multiple reflections on the interferometer surfaces, and the interference of all these waves leads to the typical resonance structure of the spectral transmittance profile described by the Airy formula. However Fabry-Perot interferometers are commonly used in conjunction with laser beams, for example when they are used as intracavity-wavelength and longitudinal mode-selecting etalons. Although it is evident that the finite size of the beam will produce a deterioration of the filtering characteristics of the F-P interferometer, this effect is not usually analyzed in undergraduate textbooks. The aim of this work is to show students how the finite size of the incident beam influences the spatial and spectral response of the F-P interferometer. In particular it will be shown that the spectral response of the F-P interferometer can significantly differ from that predicted by the Airy formula. The theoretical approach is based on a plane-wave angular spectrum representation of the incident, transmitted, and reflected beams. The incident beam is assumed to be gaussian and the cases of normal and oblique incidence are discussed.
Practical research on the teaching of Optical Design
Author(s):
Changjiang Fan;
Zhijun Ren;
Chaofu Ying;
Baojin Peng
Show Abstract
Optical design, together with applied optics, forms a complete system from basic theory to application theory, and it plays a very important role in professional education. In order to improve senior undergraduates' understanding of optical design, this course is divided into three parts: theoretical knowledge, software design and product processing. Through learning theoretical knowledge, students can master the aberration theory and the design principles of typical optical system. By using ZEMAX(an imaging design software), TRACEPRO(a lighting optical design software), SOLIDWORKS or PROE( mechanical design software), student can establish a complete model of optical system. Student can use carving machine located in lab or cooperative units to process the model. Through the above three parts, student can learn necessary practical knowledge and get improved in their learning and analysis abilities, thus they can also get enough practice to prompt their creative abilities, then they could gradually change from scientific theory learners to an Optics Engineers.
Cognition and thinking on Applied Optics course's reformation and innovation
Author(s):
Jingjing Chen;
Feng Ji;
Zhijian Liu;
Haojie Xia;
Shuangbao Shu
Show Abstract
The course of “Applied Optics” is professional and foundational for the specialty of photo-electric information and engineering. According to the characteristics of the specialty, the teaching contents, teaching means, innovations and appraisal methods are mainly discussed in this paper. Firstly, one of the most difficult part to comprehend, the Fermat principle is taken as an example in the teaching content. By using the development history of optics and interesting natural phenomenon, students' understanding of the optical knowledge can be enhanced. Secondly, in various means of teaching art, ZEMAX provides students with a platform of training innovative consciousness and engineering capacity, and it make high cohesion in teaching and scientific research. Thirdly, in the teaching innovation, photoelectric contest can stimulate students' innovative thinking, innovation awareness, and cultivate undergraduate students’ optics, mechanics, electricity, numerology integrated design capabilities. Lastly, the reform in the appraisal methods guide students from focusing on the examination results to pay attention to the learning process. Eventually, students' study interest has improved, demand of the engineering practice has adapted, and the well teaching effect has realized.
Demonstration of wave optic in physics education
Author(s):
Hao Lv;
Aimei Liu II;
Shengyi Zhang III;
Yongjun Xiao IV
Show Abstract
The set has been designed for simple and clear demonstration of wave optics basic principles. Laser diode as highly collimated light source is used as a basic element of the laser ray box. That way the quality of teaching improves and offers us new possibilities in comparison with the classic incandescent lamp. Moreover the demonstration of beams passing through the optical elements is possible. Such a solution enables the effective demonstration and modeling of basic optical devices. A classic light source cannot be used for such a range of examples. Another remarkable advantage arises from very low demand for room light conditions. Wave optic demonstration set using laser ray box can be used in standard classrooms without any additional room darkening.
Exploration on the training mode of application-oriented talents majoring in optoelectronic information
Author(s):
Hao Lv;
Aimei Liu II;
Shengyi Zhang III;
Yongjun Xiao IV
Show Abstract
The optoelectronic information major is a strong theoretical and practical specialty. In view of the problems existing in the application-oriented talents training in the optoelectronic information specialty. Five aspects of the talent cultivation plan, the teaching staff, the teaching content, the practical teaching and the scientific research on the training mode of application-oriented talents majoring in optoelectronic information are putted forward. It is beneficial to the specialty construction of optoelectronic information industry which become close to the development of enterprises, and the depth of the integration of school and enterprise service regional economic optoelectronic information high-end skilled personnel base.
FDTD method and models in optical education
Author(s):
Xiaogang Lin;
Nan Wan;
Lingdong Weng;
Hao Zhu;
Jihe Du
Show Abstract
In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell’s equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.
Study on the depolarization of CCl4 Raman spectrum by the parameter of polarizer and analyzer
Author(s):
Fengli Wang;
Lei Jiang;
Zhanshan Wang
Show Abstract
The performances of different polarizers and analyzers used in the Raman spectrometer are different, they effect the depolarization of Raman spectrum. Three polarizers and three analyzers are characterized using the spectrum of Cary5000 in the wavelength range of 505-610nm. The polarizer are chosen with the best performance and the worst performance among three polarizers. These two polarizers in turn combine with three analyzers to measure the Raman spectrum. The results show that the depolarization of CCl4 Raman spectrum is closer to theory when using the high transmittance and high polarization for polarizer in narrow wavelength range; The performance of the analyzer effects little on the depolarization, but to reduce the effect, the transmittance and the polarization of the analyzer should be high and the curves are plat in the wavelength range of the measured material’s Raman spectrum.
Exploration of multidimensional interactive classroom teaching for CCD principle and application course
Author(s):
Xinghu Fu;
Ailing Tan;
Baojun Zhang;
Guangwei Fu;
Weihong Bi
Show Abstract
The CCD principle and application course is professional and comprehensive. It involves many subject contents. The course content includes eight aspects. In order to complete the teaching tasks within a limited time, improve the classroom teaching quality and prompt students master the course content faster and better, so the multidimensional interactive classroom teaching is proposed. In the teaching practice, the interactive relationship between the frontier science, scientific research project, living example and classroom content is researched detailedly. Finally, it has been proved practically that the proposed multidimensional interactive classroom teaching can achieved good teaching effect.
Reform of experimental teaching based on quality cultivation
Author(s):
Wei Wang;
Xingwei Yan;
Wei Liu;
Tianfu Yao;
Jianhua Shi;
Bing Lei;
Haojun Hu
Show Abstract
Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students’ practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students’ learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional ‘teacher-centered’ teaching form is replaced by ‘student-centered’ form, which aims to encourage students to design the experimental systems by their own with the teacher’s guidance. In addition to depending on stimulating the students’ interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students’ mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.
The application and improvement of Fourier transform spectrometer experiment
Author(s):
Zhi-min Liu;
En-duo Gao;
Feng-qi Zhou;
Lan-lan Wang;
Xiao-hua Feng;
Jin-quan Qi;
Cheng Ji;
Luning Wang
Show Abstract
According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.
Active learning in camera calibration through vision measurement application
Author(s):
Xiaoqin Li;
Jierong Guo;
Xianchun Wang;
Changqing Liu;
Binfang Cao
Show Abstract
Since cameras are increasingly more used in scientific application as well as in the applications requiring precise visual information, effective calibration of such cameras is getting more important. There are many reasons why the measurements of objects are not accurate. The largest reason is that the lens has a distortion. Another detrimental influence on the evaluation accuracy is caused by the perspective distortions in the image. They happen whenever we cannot mount the camera perpendicularly to the objects we want to measure. In overall, it is very important for students to understand how to correct lens distortions, that is camera calibration. If the camera is calibrated, the images are rectificated, and then it is possible to obtain undistorted measurements in world coordinates. This paper presents how the students should develop a sense of active learning for mathematical camera model besides the theoretical scientific basics. The authors will present the theoretical and practical lectures which have the goal of deepening the students understanding of the mathematical models of area scan cameras and building some practical vision measurement process by themselves.
A modified rotating liquid optics method to measure the gravity acceleration
Author(s):
Peng Song;
Si Wu;
Meng Zhao;
Dongli Zhang
Show Abstract
The gravity acceleration is an important physics constant, which is measured by the rotating liquid as a university physical experiment. However, the present experimental methods have a bigger amount of experimental error. A modified rotating liquid optics method is presented to measure the gravity acceleration, in which an angle measurement instrument with an accuracy of 0.05 degree is introduced. Laser is used to measure the angles of the highest point and the lowest point of the rotating liquid. Then the gravity acceleration can be calculated. The modified method has more little error and makes the experiment easier and more convenient.
Study of the undergraduate student's innovation and entrepreneurship training strategy
Author(s):
Guorong Sui;
Binming Liang;
Hongzhi Jia
Show Abstract
With the development of science and technology, all teachers in the college will face how to stimulate the undergraduate student’s ability and make them to be an excellent engineer. For solving these questions, a new scheme with three steps has been designed. First, students will participate in the class teaching activity not only teacher. It will encourage them to read many extracurricular books and articles. Second, they will be required to think and design more new experiments after complete all experiment about the textbook and join more competition of the innovation and entrepreneurship. Third, some students who have more time and ability can early enter into his advisor professor’s lab to join various science and technology project. By this scheme, it will be realized to improve student’s innovation ability and be a brilliant engineer.
Curriculum system for experimental teaching in optoelectronic information
Author(s):
Hongwei Di;
Zhenqiang Chen;
Jun Zhang;
Yunhan Luo
Show Abstract
The experimental curriculum system is directly related to talent training quality. Based on the careful investigation of the developing request of the optoelectronic information talents in the new century, the experimental teaching goal and the content, the teaching goal was set to cultivate students' innovative consciousness, innovative thinking, creativity and problem solving ability. Through straightening out the correlation among the experimental teaching in the main courses, the whole structure design was phased out, as well as the hierarchical curriculum connotation. According to the ideas of "basic, comprehensive, applied and innovative", the construction of experimental teaching system called "triple-three" was put forward for the optoelectronic information experimental teaching practice.
Design and practice of a novel experiment teaching system based on the optoelectric information chain
Author(s):
Yunhan Luo;
Zhe Chen;
Yan Li;
Hongwei Di;
Zhen Li;
Chunhe Bai;
Jieyuan Tang;
Jun Zhang;
Xiao Yi
Show Abstract
The course of optoelectronic information science is a diverse science and technology with wide range of disciplines, intensive technology, and strong applicability. As a result, the practice teaching in undergraduate education occupies the strategic important position, which is a key link in the process of innovative talents cultivation of photoelectric information, plays a unique and irreplaceable role by any other teaching methods. In order to meet the requirements of national innovative talents of photoelectric information, the complete teaching reform strategy was put forward by combining with the higher education policy and development strategy of teaching and professional characteristics. The goal of the experimental teaching reform is to cultivate innovative talents and to construct the photoelectric information industry chain system of experimental teaching platform and cultivating creative personnel. The key clue is the photoelectric information surrounding photoelectric information, like “generation - modulation - transformation - detection - procession” which will be realized by resource integration and complementary among cross disciplines, and focusing on scientific research support for the teaching and the combination of professional knowledge and practical application. This teaching reform scheme presented in the paper will provide very good demonstration effect in the curriculum reform of other photoelectric information related courses.
Capacity-oriented curriculum system of optoelectronics in the context of large category cultivation
Author(s):
Yuan Luo;
Zhangfang Hu;
Yi Zhang
Show Abstract
In order to cultivate the innovative talents with the comprehensive development to meet the talents demand for development of economic society, Chongqing University of Posts and Telecommunications implements cultivation based on broadening basic education and enrolment in large category of general education. Optoelectronic information science and engineering major belongs to the electronic engineering category. The "2 +2" mode is utilized for personnel training, where students are without major in the first and second year and assigned to a major within the major categories in the end of the second year. In the context of the comprehensive cultivation, for the changes in the demand for professionals in the global competitive environment with the currently rapid development, especially the demand for the professional engineering technology personnel suitable to industry and development of local economic society, the concept of CDIO engineering ability cultivation is used for reference. Thus the curriculum system for the three-node structure optoelectronic information science and engineering major is proposed, which attaches great importance to engineering practice and innovation cultivation under the background of the comprehensive cultivation. The conformity between the curriculum system and the personnel training objectives is guaranteed effectively, and the consistency between the teaching philosophy and the teaching behavior is enhanced. Therefore, the idea of major construction is clear with specific characteristics.
Project-oriented teaching model about specialized courses in the information age
Author(s):
Xiaodong Chen;
Jinjiang Wang;
Qingguo Tian;
Yi Wang;
Huaiyu Cai
Show Abstract
Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.
Study on the joint training mode of optical engineering master
Author(s):
Jicheng Wang;
Zheng-Da Hu;
Tian Sang;
Shumei Gao;
Guoqing Chen
Show Abstract
We study on the joint training mode of optical engineering (OE) master in the ways of teaching, scientific research and practice cooperation. Our goal is to enhance the abilities and research level of OE graduate students by establishing the joint training cooperation with the domestic or foreign high level universities, the top research institutes and the famous enterprises, and to let more and more graduate students enter the high level universities and companies. In addition, we want to create the training quality evaluation index and evaluation system of the OE master students to evaluate this joint training mode.
The practice of problem-based investigative teaching reform in semiconductor physics course
Author(s):
Aiping Chen;
Gaojian Wu;
Dawei Gu;
Hongying Jiang;
Lei Wang
Show Abstract
Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.
Experimental teaching reforms of optical fiber communication based on general education
Author(s):
L. Lan;
S. Liu;
J. H. Zhou;
Z. M. Peng
Show Abstract
It’s necessary that higher education experimental teaching reforms on the basis of general education. This paper put forward the experimental teaching reform mode of optical fiber communication in the context of general education. With some reform measures such as improving the experimental content, enriching the experimental style, modifying the experimental teaching method, and adjusting the evaluation method of experimental teaching, the concept of general education is put throughout the experimental teaching of optical fiber communication. In this way, it facilitates the development of students and improvement of experimental teaching quality.
Recent progress in holographic display technology
Author(s):
Ling Li;
Keyu Tao
Show Abstract
Optics is one of the most important courses for students whose majors are optics-related. In this article, we would like to share our teaching experiences of introducing the newest holographic display technologies which are understandable for undergraduate students. According to the feedbacks from the students, it can stimulate the students' interest in the course by introducing the up-to-date research achievements. And the students can understand the basic concepts and principles quite well while we link them with the scientific frontier. We think it is important for the course instructors to keep in steps with the discipline frontier, thus we can introduce the newest contents to the students. The teaching mode is more flexible, the teaching process will be more attractive.
Improvement of the experimental content in Laser Principle and its Application
Author(s):
Chun-hui Niu;
Xiao-ping Lang;
Yong Lv;
Hao Meng
Show Abstract
Experimental teaching content of Laser Principle and Its Application is proposed to improve from experimental teaching devices and experimental guide book. At first, a experimental system of laser-diode-pumped solid-state laser is designed and manufactured. Separate optical components are adopted in the designed experimental system and students can put these optical components on every place and their ability to establish and adjust optical path can be enhanced. Moreover, experimental education outline of Laser Principle and Its Application is revised and improved. At last, experimental guide book for the designed and manufactured experimental device is written. The experimental teaching innovation will improve experimental teaching effect and quality of Laser Principle and Its Application.
Pure study and experimental application of laser measurement for students in independent colleges
Author(s):
Wanyi Zhang;
Zhe Liu
Show Abstract
The cultivation of independent college students is the development of applied talents and the strength of students’ innovative ability. This requires teachers to make better use of the resources of the school, to develop students' ability with greatest possible and to encourage students to learn independently and personality development. We can carry out multi-discipline curriculum design practice after the study of related disciplines in order to make students have a more in-depth understanding and learning of the professional courses. In this paper, we will research on curriculum design based on the combination of Laser Measurement Technology and Digital Image Processing.
Exploration on practice teaching reform of Photoelectric Image Processing course under applied transformation
Author(s):
Binfang Cao;
Xiaoqin Li;
Changqing Liu;
Jianqi Li
Show Abstract
With the further applied transformation of local colleges, teachers are urgently needed to make corresponding changes in the teaching content and methods from different courses. The article discusses practice teaching reform of the Photoelectric Image Processing course in the Optoelectronic Information Science and Engineering major. The Digital Signal Processing (DSP) platform is introduced to the experimental teaching. It will mobilize and inspire students and also enhance their learning motivation and innovation through specific examples. The course via teaching practice process has become the most popular course among students, which will further drive students' enthusiasm and confidence to participate in all kinds of electronic competitions.
Practice and thinking on examination way reform of optoelectronic detection technology course
Author(s):
Xue-lian Yu;
Jia-cheng Zhang;
Tao Shen;
Yan-ling Xiong;
Wen-long Yang
Show Abstract
Choosing a reasonable examination way is beneficial to the cultivation of high quality talents. Recently, the conventional college examination methods involve writing and oral test, which is extremely focused on academic performance and caused the separation between teachers and examinations. Optoelectronic detection technology is a specialized course with strong applicability. Therefore, we proposed a diverse form and scientific content method. It is proved that the students receive better learning effect and improve learning and engineering practice ability compared with the traditional assessment methods.
Effective approach to spectroscopy and spectral analysis techniques using Matlab
Author(s):
Xiang Li;
Yong Lv
Show Abstract
With the development of electronic information, computer and network, modern education technology has entered new era, which would give a great impact on teaching process. Spectroscopy and spectral analysis is an elective course for Optoelectronic Information Science and engineering. The teaching objective of this course is to master the basic concepts and principles of spectroscopy, spectral analysis and testing of basic technical means. Then, let the students learn the principle and technology of the spectrum to study the structure and state of the material and the developing process of the technology. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, Based on the teaching practice, this paper summarizes the new situation of applying Matlab to the teaching of spectroscopy. This would be suitable for most of the current school multimedia assisted teaching
MOOC construction and application in professional degree postgraduate education: taking Introduction to Engineering Optics as an example
Author(s):
Feng Hu;
Jin-peng Zhou;
Xing-shu Wang
Show Abstract
Aiming at the deficiency of the traditional postgraduate education mode for professional degree, such as the conflict between work and study, restricted supply and demand and poor efficiency of course teaching, the emergence of Massive Open Online Course (MOOC) which has large scale, online and open features can make up for the shortage of traditional professional degree postgraduate education mode by introducing MOOC teaching mode. However, it is still a fangle to integrate MOOC into the traditional postgraduate education for professional degree and there are no standard methods for reference in the construction of MOOC courses as well as the corresponding evaluations. In this paper, the construction method and practical experience of MOOC courses for professional degree postgraduate education are discussed in details, based on the MOOC course of Introduction to Engineering Optics. Firstly, the principle of MOOC course contents for professional degree postgraduate education is introduced from the aspects of students’ demand, MOOC features and practical applications. Secondly, the optimization of MOOC teaching mode is discussed in order to improve the teaching quality and learning efficiency. Thirdly, in order to overcome the deficiency of current MOOC examination schemes, a novel MOOC evaluation scheme is proposed which is capable of assessing students’ learning attitude as well as their ability and performance differences. Finally, a practical summary is given about how to integrate the MOOC teaching mode into the postgraduate education for professional degree, including the constructions of teaching team, course system as well as other factors. From the paper, we can conclude that the integration of MOOC teaching mode into the postgraduate education for professional degree will improve the teaching quality and efficiency.
Exploration on the course construction of ocean optics
Author(s):
Bing Mu;
Ying Li;
Tingwei Cui
Show Abstract
Ocean optics discusses the light transmission in seawater, which is a specialty course combining optics and ocean study, and the core course of relevant professional directions. This paper introduces its learning goal and contents. Meanwhile, it also discusses adding study project lecture series and investigating study to realize scientific research back feeding traditional learning. This would further inspire students' interest, cultivate students' innovation and practice ability, and enable them to lay a solid foundation of professional theory.
Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research
Author(s):
Peng Song
Show Abstract
The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students’ aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.
Magneto-optical Kerr effect studies with classical electromagnetic theory
Author(s):
Rui-Can Ma;
Ling-Ling Gao;
Ting Zhang;
Yi Jin
Show Abstract
Employing the basic law of electromagnetic wave propagation with the constitutive relation of ideal ferromagnetic medium, the magneto-optical Kerr effect of linearly polarized plane wave on the surface of ideal ferromagnetic medium is studied. We also discuss the change law of the Kerr rotation angle with the incident angle and magnetic-field strength in detail, which can provide crucial information for the applications of the magneto-optical Kerr effect in many fields.
Micro- and nano-photonics course in Beijing Institute of Technology
Author(s):
Bin Hu;
Juan Liu
Show Abstract
'Micro- and nano-photonics' is a course for PhD candidates in School of Optoelectronics, Beijing Institute of Technology. The aim of the course is to introduce the recent development of micro- and nano-photonics to PhD students of optical engineering. The teaching content includes new branches of photonics, including basic theories and developments of plasmonics, matamaterials, photonics crystals and fibers. Then theoretical analysis of nanophotonics, as well as the simulation methods and software are introduced. The fabrication methods of nanophotonic devices are also introduced. More than 30 PhD students have been taught by this course since 2012. In this paper, we give an introduction about our course and its effects on the students' research. We also give a discussion about how to give class to PhD students with backgrounds of optics and photonics.
A practice course to cultivate students' comprehensive ability of photoelectricity
Author(s):
Yong Lv;
Yang Liu;
Chunhui Niu;
Lishuang Liu
Show Abstract
After the studying of many theoretical courses, it’s important and urgent for the students from specialty of optoelectronic information science and engineering to cultivate their comprehensive ability of photoelectricity. We set up a comprehensive practice course named “Integrated Design of Optoelectronic Information System” (IDOIS) for the purpose that students can integrate their knowledge of optics, electronics and computer programming to design, install and debug an optoelectronic system with independent functions. Eight years of practice shows that this practice course can train students' ability of analysis, design/development and debugging of photoelectric system, improve their ability in document retrieval, design proposal and summary report writing, teamwork, innovation consciousness and skill.
Exploration of teaching mode aiming at engineering training
Author(s):
Cunli Duan;
Wangyun Liu;
Yuhong Zhang
Show Abstract
Specialty of optoelectronic information science and engineering is aim to cultivate senior specialized talents of photoelectric system design and implementation. The optical signal transmission is indispensable in the photovoltaic system. The problems existing in the teaching of information classes of the specialty at present are analysed and the teaching mode aiming to engineering training is proposed. The specific content is as follows: The principle problem of optical information transmission system is solved in the theoretical teaching in the classroom, the problem of the system design and simulation implementation is solved in the course design, the problem of the hardware implementation of the system is solved in the professional experiments. The training of the whole process from the principle of optical information transmission system design, software simulation to hardware implementation is achieved through this kind of teaching mode.
Integrated design course of applied optics focusing on operating and maintaining abilities
Author(s):
Zhongjie Xu;
Yu Ning;
Tian Jiang;
Xiangai Cheng
Show Abstract
The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.
Assessment by psychophysical methods for design courses of optical discipline
Author(s):
Weige Lv;
Xiaodong Zheng;
Xiaotong Li;
Lingying Jiang;
Zhaofeng Cen
Show Abstract
In the teaching of design courses, the process of students to complete the designs is considered more important than the final results, and usually there are no standard answers for these designs. Thus, the research on the process evaluation method in design courses is of great significance. Taking the assessments of two design courses in optical discipline as examples, the psychophysical experimental methods are introduced into the process evaluation of the design courses, i.e. the process evaluation given by each student to others in forms of classification, sorting or grading are adopted as one trial of a psychophysical experiment, which generate many experimental data of mutual evaluation. Based on these data, evaluation results are measured scientifically using the statistical method. Furthermore, through correlation analysis and regression analysis of these data, the relationship among various aspects of different process can be studied. It is easier for students to understand and accept their assessment results, and more helpful for teachers to analyze the influencing factors in their teaching process.
Exploration of optical classroom teaching by network platform
Author(s):
Zheng Jiao;
Kun Ma
Show Abstract
The investigation shows that the difficulties students encounter in the course of optics are mainly due to the abstraction of the content of the optical course, and the problem that the description of the physical phenomenon and process is difficult to show in the classroom teaching. We consider to integrate information technology with classroom teaching. Teachers can set up course websites and create more teaching resources, such as videos of experimental processes, design of simulated optical paths, mock demonstration of optical phenomena, and so on. Teachers can use the courseware to link the resources of the website platform, and display the related resources to the students. After class, students are also able to learn through the website, which is helpful to their study.
Mobile internet and technology for optical teaching reform in higher education
Author(s):
Muchun Zhou;
Qi Zhao;
Yanru Chen
Show Abstract
There are some problems in optical education such as insufficient flexibility, individuality and adaptability to students who need information and education at present. The development of mobile internet and technology provides support to solve these problems. Basic characteristics, advantages and developments of these techniques used in education are presented in this paper. Mobile internet is introduced to reform the classroom teaching of optical courses. Mobile network tool selection, teaching resources construction and reform in teaching methods are discussed. Academic record and sampling surveys are used to assess intention to adopt mobile internet and learning effect of academic major of students, the results show that high quality optical education can be offered by adopting mobile internet and technologies in traditional instruction.
Investigation on the learning interest of senior undergraduate students in optoelectronics specialty
Author(s):
Shenjiang Wu;
Na Wang;
Dangjuan Li;
Chanlao Liu
Show Abstract
With the increasing number of the graduate students, many of them have some troubles in job finding. This situation make a huge pressure on the senior students and loss them the interesting in study. This work investigate the reasons by questionnaire survey, panel discussion, interview, etc. to achieve the factors influence their learning interesting. The main reason of students do not have the motivation on study is that they do not understand the development and competition of photoelectric specialty, lack of innovation and entrepreneurship training, hysteresis of the learning knowledge and practical application. Finally, the paper gives some suggestions through teaching reform on how to improve students' learning enthusiasm. This work will contribute to the teaching and training of senior undergraduate students of optoelectronics specialty.
Cultivating engineering innovation ability based on optoelectronic experimental platform
Author(s):
Dangjuan Li;
Shenjiang Wu
Show Abstract
As the supporting experimental platform of the Xi'an Technological University education reform experimental class, “optical technological innovation experimental platform” integrated the design and comprehensive experiments of the optical multi-class courses. On the basis of summing up the past two years teaching experience, platform pilot projects were improve. It has played a good role by making the use of an open teaching model in the cultivating engineering innovation spirit and scientific thinking of the students.
The exploration on the reform of production practice for photoelectric specialty
Author(s):
Ling-ling Wu;
Ming Gao;
Hai-bin Chen;
Chan-lao Liu
Show Abstract
During the undergraduate course of students of photoelectric specialty, production practice is a very important step. Aiming at solving the disadvantage of the traditional production practice procedure, consulting the actual situation of production practice in recent years, some exploration was carried out to reform the production practice for the photoelectric specialty through the combination of application of practice base off campus and construction of practice base on campus, which has many models to satisfy the requirements of the diversity of photoelectric specialty and high quality innovative talents. All the facts proved that the practice quality is improved obviously.
Virtual simulation experiment in the course Laser Principles and Techniques for undergraduates
Author(s):
Kun Li;
Bo Wu
Show Abstract
The course Laser Principle and Technology for undergraduates is a multi-physics subject with main contents of laser's basic principle, laser modulation techniques, Q-switching techniques, etc. . In order to help students understand the complex theory and to integrate the theory with the engineering practice, we developed a virtual simulation platform/software. This platform consists of three main modules (laser generation, laser propagation and laser controlling), which can be subdivided into eight secondary modules, including laser output characteristics, laser resonator, laser modulation, frequency conversion, et al. . Each module has its input and output parameters and can be modified by the user. The theoretical models and the algorithms are introduced in this article. The output characteristics of the relaxation oscillation process are presented as an example of the simulation results.
Digital education reform for improving interaction between students and instructors
Author(s):
Qiansong Deng;
Yuanjie Li;
Lixin Zheng
Show Abstract
Nowadays it is difficult to attract undergraduate students’ interesting to put sufficient time to learn major courses in China, which are too hard for them to quick grasp and fully understanding. Here we report a digital education reform for improving interactions between students and instructors, in which we transform the abstract, obscure and boring knowledge, such as physical, mathematical, electronic or optical concepts into direct and dynamic 3-D model and flash. Therefore, this method can convert theoretical concepts into easy understanding pictures. Our several years’ experience shows that this education mode can make students’ willing to think and practice, then it is helpful for attracting their learning interests. Most students benefit from this education mode which can greatly enhance their understanding abilities.
Research on pre-scientific concept of light in children's cognitive activity
Author(s):
Zhigao Lan;
Yang Yu;
Dan Yan;
Shulin Yang
Show Abstract
Based on the theory of Ausubel’s meaningful learning and cognitive characteristic of childens pre-scientific concept, two students of Huang Gang Middle School have been interviewed continuously about cognition of interaction between light and matter. Comprehension degree of childens pre-scientific concept about interaction between light and matter has been deeply understood, formation of strategy of childens pre-scientific concept has been discussed. Several influence factors related to formation of childens pre-scientific concept have been analyzed, such as sex, family environment, and learning experience of kindergarten and primary school.
The research on teaching reformation of photoelectric information science and engineering specialty experiments
Author(s):
Zheng Zhu;
Fan Yang;
Yang Zhang;
Tao Geng;
Yuxiang Li
Show Abstract
This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students’ scientific research ability and make them to be the talent suitable for photoelectric industry.
An experiment teaching method based on the Optisystem simulation platform
Author(s):
Jihua Zhu;
Xuanlu Xiao;
Yuan Luo
Show Abstract
The experiment teaching of optical communication system is difficult to achieve because of expensive equipment. The Optisystem is optical communication system design software, being able to provide such a simulation platform. According to the characteristic of the OptiSystem, an approach of experiment teaching is put forward in this paper. It includes three gradual levels, the basics, the deeper looks and the practices. Firstly, the basics introduce a brief overview of the technology, then the deeper looks include demoes and example analyses, lastly the practices are going on through the team seminars and comments. A variety of teaching forms are implemented in class. The fact proves that this method can not only make up the laboratory but also motivate the students’ learning interest and improve their practical abilities, cooperation abilities and creative spirits. On the whole, it greatly raises the teaching effect.
The construction of bilingual teaching of optoelectronic technology
Author(s):
Yang Zhang;
Enming Zhao;
Fan Yang;
Qingbo Li;
Zheng Zhu;
Cheng Li;
Peng Sun
Show Abstract
This paper combines the characteristics of optoelectronic technology with that of bilingual teaching. The course pays attention to integrating theory with practice, and cultivating learners' ability. Reform and exploration have been done in the fields of teaching materials, teaching content, teaching methods, etc. The concrete content mainly includes five parts: selecting teaching materials, establishing teaching syllabus, choosing suitable teaching method, making multimedia courseware and improving the test system, which can arouse students’ interest in their study and their autonomous learning ability to provide beneficial references for improving the quality of talents of optoelectronic bilingual courses.
Reform and practice of optical coherence tomography (OCT) system-driven teaching for optoelectronic instrument principle and design
Author(s):
Zhifang Li;
Youwu He;
Hui Li
Show Abstract
Optoelectronic instrument principle and design includes the optical, mechanical, electrical and count modules for one system. We change traditional mode of customary specialty course design for only taking the cell design ability into account. Optical coherence tomography (OCT) can provide high-resolution 3D imaging system and wide application for tissue in vivo. In this work, we carry out OCT system– driven teaching into execution in the course design teaching, and decompose OCT system into four modules for teaching progress. The reform is not only cultivating student design ability based on OCT system exploitation, improving the engineering ability, but also help scientific research promote teaching process.
Analysis on an illusion unexpected occurred on a moving statue leaving in fact but approaching by environmental judgment
Author(s):
Youwu He;
Zhifang Li;
Yishen Qiu;
Hui Li
Show Abstract
Earlier this year we visited Sanya, Hainan Province, China. There is a huge statue, the South Sea Avalokitesvara (南海观世音菩萨), at Sanya Nanshan Buddhism Cultural Tourism Resort. When we were gazing at the statue on a leaving car on gradually rising road, an unexpected visual illusion took place in which the statue seemed running after us. In this presentation, an optical model is developed to explain the illusion occurred on a moving object leaving in fact but approaching by environmental judgement. Such an interesting illusion analysis will play a significant role in having students understood the main principles in geometrical optics.
Cultivation mode research of practical application talents for optical engineering major
Author(s):
Zhiying Liu
Show Abstract
The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students’ foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student talents and employer.
The reform of the teaching mode of Applied Optics curriculum and analysis of teaching effect
Author(s):
Yu Ning;
Zhongjie Xu;
Dun Li;
Zilun Chen;
Xiangai Cheng;
Hairong Zhong
Show Abstract
Military academies have two distinctive characteristics on talent training: Firstly, we must teach facing actual combat and connecting with academic frontier. Secondly, the bachelor's degree education and the military education should be balanced. The teaching mode of basic curriculum in military academies must be reformed and optimized on the basis of the traditional teaching mode, so as to ensure the high quality of teaching and provide enough guidance and help for students to support their academic burden. In this paper, our main work on "Applied Optics" teaching mode reform is introduced: First of all, we research extensively and learn fully from advanced teaching modes of the well-known universities at home and abroad, a whole design is made for the teaching mode of the core curriculum of optical engineering in our school "Applied Optics", building a new teaching mode which takes the methods of teaching basic parts as details, teaching application parts as emphases, teaching frontier parts as topics and teaching actual combat parts on site. Then combining with the questionnaire survey of students and opinions proposed by relevant experts in the teaching seminar, teaching effect and generalizability of the new teaching mode are analyzed and evaluated.
Fiber-optical sensor with intensity compensation model in college teaching of physics experiment
Author(s):
Liping Su;
Yang Zhang Sr.;
Kun Li Sr.;
Yu Zhang
Show Abstract
Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.
Virtual experiment of optical spatial filtering in Matlab environment
Author(s):
Yunjing Ji;
Chunyong Wang;
Yang Song;
Jiancheng Lai;
Qinghua Wang;
Jing Qi;
Zhonghua Shen
Show Abstract
The principle of spatial filtering experiment has been introduced, and the computer simulation platform with graphical user interface (GUI) has been made out in Matlab environment. Using it various filtering processes for different input image or different filtering purpose will be completed accurately, and filtering effect can be observed clearly with adjusting experimental parameters. The physical nature of the optical spatial filtering can be showed vividly, and so experimental teaching effect will be promoted.
Undergraduate education for optical engineering in China under the multidisciplinary education background
Author(s):
Jing Qi;
Yunjing Ji
Show Abstract
As an basic discipline , Optics is widely used in many fields such as scientific research, industrial applications, art industry, etc.. The industry is facing significant changes at present. Thus talented people acquired multidisciplinary knowledge are needed world widely. To cultivate talents with optical background, both the educators and students need to value the basic disciplinary education. The construction of laboratories for optics disciplinary and the cooperation between different disciplines is also discussed.
Create a good learning environment and motivate active learning enthusiasm
Author(s):
Weihong Bi;
Guangwei Fu;
Xinghu Fu;
Baojun Zhang;
Qiang Liu;
Wa Jin
Show Abstract
In view of the current poor learning initiative of undergraduates, the idea of creating a good learning environment and motivating active learning enthusiasm is proposed. In practice, the professional tutor is allocated and professional introduction course is opened for college freshman. It can promote communication between the professional teachers and students as early as possible, and guide students to know and devote the professional knowledge by the preconceived form. Practice results show that these solutions can improve the students interest in learning initiative, so that the active learning and self-learning has become a habit in the classroom.
The hierarchical teaching method exploration for curriculum design of photoelectric discipline
Author(s):
Huaping Gong;
Pei Liang;
Yongxing Jin;
Sunan Xu;
Yan Zhang
Show Abstract
This paper is mainly introducing the exploration of the hierarchical teaching method for curriculum design of photoelectric discipline. Due to the primal problems which extensively exist in current teaching on curriculum design practical course, some new suggestions are discussed in the aspects of teaching contents, experimental schemes, instruction modes and assessment methods. The curriculum design practical course should be updated with the professional hot spots. Combining the big class oriented instruction and group instruction, a hierarchical teaching mode is established, which implements layered training with a wide range for all students. With all of these efforts the teaching method of curriculum design practical course can be improved.
Research on teaching reform and practice of applied optics design experiment
Author(s):
Tao Geng;
Chengguo Tong;
Tao Zhang;
Cunlian Lu;
Ting Meng;
Yang Zhang;
Ran Wang;
Weimin Sun;
Zhihai Liu;
Jun Yang
Show Abstract
It is an important way to effectively improve applied optics experimental teaching effect and motivate the undergraduates’ practice ability and creativity by means of scientific and systematic setting teaching contents and link. Based on the research and analysis of applied optics experiment teaching present condition at home and abroad, this paper aims to solve the existed problems and deficiencies during the experiment teaching in our university, and also puts forward some reform ideas and practice method from several aspects such as teaching thought, teaching content and mode, examination and evaluation and so on. Simultaneously, this paper also gives some suggestions on the future course development.
Exploring in teaching mode of Optical Fiber Sensing Technology outcomes-based education (OBE)
Author(s):
Guangwei Fu;
Xinghu Fu;
Baojun Zhang;
Weihong Bi
Show Abstract
Combining with the characteristics of disciplines and OBE mode, also aiming at the phenomena of low learning enthusiasm for the major required courses for senior students, the course of optical fiber sensing was chosen as the demonstration for the teaching mode reform. In the light of "theory as the base, focus on the application, highlighting the practice" principle, we emphasis on the introduction of the latest scientific research achievements and current development trends, highlight the practicability and practicality. By observation learning and course project, enables students to carry out innovative project design and implementation means related to the practical problems in science and engineering of this course.
Innovation ability and innovation spirit in photoelectric comprehensive experiment teaching
Author(s):
Dexing Wang;
Yang Zhang;
Xiaofeng Wang;
Xiaojun Zhang;
Tao Zhang;
Peng Sun
Show Abstract
The traditional experimental teaching methods have some shortcomings in the training the student innovation ability. In order to improve the student practical ability in the photoelectric technology, in this paper new experimental teaching modes are tried and reformed for cultivating the innovative ability of students in the linear CCD experiment. The photoelectric experiment systems are independently designed and completed by students. Compared with the traditional experimental teaching methods, this new methods have a great role in the development of the ability of creative thinking.
Experiment and application of soft x-ray grazing incidence optical scattering phenomena
Author(s):
Shuyan Chen;
Cheng Li;
Yang Zhang;
Liping Su;
Tao Geng;
Kun Li
Show Abstract
For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.
Research of fiber optical faceplate defects segmentation based on improved watershed algorithm
Author(s):
Bingqian Yang;
Mingquan Wang;
Junsheng Zhang;
Jinkai Gao
Show Abstract
In this paper, an improved adaptive watershed segmentation method is proposed based on the characteristics of the optical fiber faceplate. Firstly, median filtering and morphological contrast enhancement are performed on the defect images, and then the gradient of the image is obtained by multi-scale morphology. In the improved watershed algorithm, the local minimum is first removed which the depth is lower than H. Then, the local minimum of the depth larger than H as the seed point are extended. Finally, the gradient image is modified by the forced minimum method. The modified gradient image is used to make the watershed Segmentation to get the final segmentation result .The experimental results show that the method can effectively suppress the over-segmentation, and the defects can be extracted well.
Workshops on photonics and optoinformatics for school students at ITMO University
Author(s):
Natalia Andreeva;
Azat Ismagilov;
Tatiana Kuzmina;
Sergei Kozlov
Show Abstract
The program of workshops on photonics and optoinformatics was created at Department of Photonics and Optical Information Technologies in ITMO University by specialists in scientific and educational areas. These workshops are carried out for students of the best schools of Saint-Petersburg specialized in physics and mathematics, such as Gubernatorial Lyceum and Presidential Lyceum, and best schools of Russia. Every year about 500 of school students come to our workshops, including Annual summer educational practice.
Simulation teaching method in Engineering Optics
Author(s):
Qieni Lu;
Yi Wang M.D.;
Hongbin Li Sr.
Show Abstract
We here introduce a pedagogical method of theoretical simulation as one major means of the teaching process of “Engineering Optics” in course quality improvement action plan (Qc) in our school. Students, in groups of three to five, complete simulations of interference, diffraction, electromagnetism and polarization of light; each student is evaluated and scored in light of his performance in the interviews between the teacher and the student, and each student can opt to be interviewed many times until he is satisfied with his score and learning. After three years of Qc practice, the remarkable teaching and learning effect is obatined. Such theoretical simulation experiment is a very valuable teaching method worthwhile for physical optics which is highly theoretical and abstruse. This teaching methodology works well in training students as to how to ask questions and how to solve problems, which can also stimulate their interest in research learning and their initiative to develop their self-confidence and sense of innovation.
Innovative research on the group teaching mode based on the LabVIEW virtual environment
Author(s):
Pei Liang;
Jie Huang;
Hua-ping Gong;
Qian-min Dong;
Yan-yan Dong;
Cai-xia Sun
Show Abstract
This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course “Virtual Instrument technique and LABVIEW programming”, we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.
Research on Experiment-Guidance-Theory teaching mode in optics course
Author(s):
Jiancheng Lai;
Zhenhua Li;
Yunjing Ji;
Jing Qi;
Yang Song
Show Abstract
Optical theories were all originating from the experimental phenomena, as a result, we can combine the theories and experiments organically in optics teaching that can make the teaching content more intuitive and vivid to stimulate the students' learning interests. In this paper, we proposed the "Experiment-Guidance-Theory" teaching mode in optics course by integrating the theory of optics courses with corresponding experiments. Before the theoretical learning, the students would do some basic experiments to observe the optical phenomena on themselves and answer the corresponding illuminating questions to put themselves into the role, and then the teachers explain the corresponding optical methods and theories, at last, the students must attend an expansive discussion and innovation experiment around the optical theme to expand their scientific view and innovation ability. This is a kind of inquiry-based teaching method, which can stimulate the students' studying interests and improve learning initiative. Meanwhile, the ideas of scientific research also be integrated into teaching, which is beneficial to cultivate students' ability to carry out innovative research.
Study on process evaluation model of students' learning in practical course
Author(s):
Jie Huang;
Pei Liang;
Wei-min Shen;
Youxiang Ye
Show Abstract
In practical course teaching based on project object method, the traditional evaluation methods include class attendance, assignments and exams fails to give incentives to undergraduate students to learn innovatively and autonomously. In this paper, the element such as creative innovation, teamwork, document and reporting were put into process evaluation methods, and a process evaluation model was set up. Educational practice shows that the evaluation model makes process evaluation of students' learning more comprehensive, accurate, and fairly.
Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord
Author(s):
Yiping Cao;
Wenjing Chen;
Qican Zhang;
Yuankun Liu;
Dahai Li;
Xinzhi Zhou;
Jun Wei
Show Abstract
Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.
The value of art-oriented pedagogical approaches to the teaching of optics and photonics
Author(s):
Stephen M. Pompea;
Nancy L. Regens
Show Abstract
Art-oriented pedagogical approaches have been successfully applied to optics and photonics education. We will describe how art-based programs that incorporate a Visual Thinking Strategies (VTS) approach can be used by optics and photonics educators. VTS encourages both a deep appreciation of the content of optics images and phenomena and a highly participatory approach to understanding them. This type of approach has been used by the authors in a variety of educational settings including teacher professional development workshops, museum and science center-based programs, after school programs and in two-week intensive summer academies for students. These approaches work well with multiple age groups including primary and secondary grade students, university students, and adults who may have little apparent connection to optics and photonics. This art-science hybrid approach can be used by university professors, optics/photonics professionals who do public programs, museum educators, and classroom science teachers.
The importance of pedagogical content knowledge in curriculum development for illumination engineering
Author(s):
Stephen M. Pompea;
Constance E. Walker
Show Abstract
An understanding of pedagogical content knowledge (PCK) and educative materials has been critical to our teaching programs in illumination engineering. We will discuss the PCK basis of a number of innovative curriculum efforts at the National Optical Astronomy and how we develop “educative materials” that improve educator content knowledge, pedagogical knowledge, and contextual knowledge. We also describe the process and team approach required to create these “educative materials.” The foundation of our work at NOAO were two previous projects at the NASA Classroom of the Future. These projects created educative curricular materials with sophisticated science content integrated with a deep, authentic understanding of science process. Additional curricula with these attributes were developed at NOAO for the NSF-sponsored Hands-On Optics project (SPIE, OSA, and NOAO), for the citizen science project Globe at Night (NOAO), and for the Quality Lighting Teaching Kits (NOAO, International Astronomical Union, OSA Foundation, SPIE, CIE, and the International Dark Sky Association). These projects all strove to create educative instructional materials that can enhance the pedagogical content knowledge of educators.
Research on training model of the optoelectronic major university student's innovative ability under the guidance of TRIZ theory
Author(s):
Qing Wang;
Wenbo Xiao;
Chao Yan;
Shengpeng Wan;
Xingdao He
Show Abstract
With the rapid development of optoelectronic technology, it is more and more difficult for the students to grasp the related knowledge, and to have innovative thinking and innovative ability. The reason is that the students can’t understand that knowledge easily; In addition, the students find it is hard to find innovative projects to enhance themselves. This paper summarizes a teaching approach to impart innovative knowledge. The following is: help students to establish the following thinking, "according to the difficulties encountered in photovoltaic technology, identify and find the key problem, → converted into the standard TRIZ problem →find their own solutions. The results show that this approach plays an important role in cultivating students' creative thinking.
A development optical course based on optical fiber white light interference
Author(s):
Haili Jiang;
Qiuhua Sun;
Yancheng Zhao;
Qingbo Li
Show Abstract
The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don’t know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students’ ability of using scientific methods to solve complex engineering problems.