Proceedings Volume 10377

Optical System Alignment, Tolerancing, and Verification XI

cover
Proceedings Volume 10377

Optical System Alignment, Tolerancing, and Verification XI

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 5 December 2017
Contents: 6 Sessions, 22 Papers, 15 Presentations
Conference: SPIE Optical Engineering + Applications 2017
Volume Number: 10377

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10377
  • Verification and System Alignment
  • Optical Tolerancing
  • Alignment of Optical Systems I
  • Alignment of Optical Systems II
  • Poster Session
Front Matter: Volume 10377
icon_mobile_dropdown
Front Matter: Volume 10377
This PDF file contains the front matter associated with SPIE Proceedings Volume 10377, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Verification and System Alignment
icon_mobile_dropdown
Sub-cell turning to accomplish micron-level alignment of precision assemblies
James J. Kumler, Christian Buss
Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.
Tolerancing a lens for LED uniform illumination
Jieun Ryu, Jose Sasian
A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.
Photonic Doppler velocimetry probe used to measure grain boundaries of dynamic shocked materials
Robert M. Malone, Steven A. Clarke, Saryu J. Fensin, et al.
Material scientists have developed computational modeling to predict the dynamic response of materials undergoing stress, but there is still a need to make precision measurements of surfaces undergoing shock compression. Miniature photonic Doppler velocimetry (PDV) probes have been developed to measure the velocity distribution from a moving surface traveling tens of kilometers per second. These probes use hundreds of optical fibers imaged by optical relays onto different regions of this moving surface. While previous work examined large surface areas, we have now developed a PDV microscope that can interrogate 37 different spots within a field of view of <1 mm, with a standoff distance of 17 mm, to analyze the motion differences across grain boundaries of the material undergoing dynamic stress. Each PDV fiber interrogates a 10 μm spot size on the moving surface. A separate imaging system using a coherent bundle records the location of the PDV spots relative to the grain boundaries prior to the dynamic event. Designing the mounting structures for the lenses, fibers, and coherent bundle was a challenge. To minimize back reflections, the fibers are index matched onto the first relay lens, which is made of fused silica. The PDV fibers are aligned normal to the moving surface. The imaging probe views the surface at an 18° angle. The coherent bundle is tilted 11° to its optical relay. All components are assembled into a single probe head assembly. The coherent bundle is removed from the probe head to be used for the next dynamic event. Alignment issues will also be discussed.
Integrated confocal Raman probe combined with a free-form reflector based lab-on-chip
Qing Liu, Giancarlo Barbieri, Hugo Thienpont, et al.
Raman spectroscopy is a powerful tool for analytical measurements in many applications. Traditional Raman spectroscopic analyses require bulky equipment, considerable time of signal acquisition and manual sampling of substances under test. In this paper, we take a step from bulky and manual consuming laboratory testing towards lab-on-chip (LOC) analyses. We miniaturize the Raman spectroscopic system by combining a free-form reflector based polymer LOC with a customized Raman probe. By using the confocal detection principle, we aim to enhance the detection of the Raman signals from the substance of interest due to the suppression of the background Raman signal from the polymer of the chip. Next to the LOC we miniaturize the external optical components, surrounding the reflector embedding optofluidic chip, and assemble these in a Raman probe. We evaluate the misalignment tolerance of internal optics (LOC) and external optics (Raman probe) by non-sequential ray tracing which shows that off-axis misalignment is around ±400μm and the maximum working distance of our Raman probe is 71mm. Using this probe, the system could be implemented as a portable reader unit containing the external optics, in which a low-cost, robust and mass manufacturable microfluidic LOC containing a freeform reflector is inserted, to enable confocal Raman spectroscopy measurements.
Optical Tolerancing
icon_mobile_dropdown
Understanding product cost vs. performance through an in-depth system Monte Carlo analysis
The manner in which an optical system is toleranced and compensated greatly affects the cost to build it. By having a detailed understanding of different tolerance and compensation methods, the end user can decide on the balance of cost and performance. A detailed phased approach Monte Carlo analysis can be used to demonstrate the tradeoffs between cost and performance. In complex high performance optical systems, performance is fine-tuned by making adjustments to the optical systems after they are initially built. This process enables the overall best system performance, without the need for fabricating components to stringent tolerance levels that often can be outside of a fabricator’s manufacturing capabilities. A good performance simulation of as built performance can interrogate different steps of the fabrication and build process. Such a simulation may aid the evaluation of whether the measured parameters are within the acceptable range of system performance at that stage of the build process. Finding errors before an optical system progresses further into the build process saves both time and money. Having the appropriate tolerances and compensation strategy tied to a specific performance level will optimize the overall product cost.
Specifying tilts, decenters, and beam deviations using the new edition of ISO 10110-6
ISO 10110-6 has been the international standard for defining and notating tilt and decenter within optical elements. The increasing sophistication of optical componentry and systems, driven largely by new design and fabrication capabilities, made clear the need for an expansion of that document. This paper introduces the contexts, reviews the concepts related to optical centration, and describes the notation system within the 2015 edition of the document.
Specification and tolerancing of bulk glass material imperfections with ISO standards
Standards for the specification of tolerances for glass material imperfections have been evolving over the past 40 years. Today, several individual ISO Standards for drawings and drawing notation − ISO 10110-2, ISO-10110-3, and ISO- 10110-4, which were last revised in 1996 and 1997 − are being merged and re-written to incorporate technical improvements and enhance the clarity of presentation. The new standard, tentatively numbered ISO 10110-18, is on schedule for release in 2018. It will also provide notation to directly utilize concepts and quality classes defined in ISO 12123, the newly revised standard for raw glass material. New ways to specify striae and a way to specify raw material specifications on a finished part drawing are two additional highlights of the revised versions of this set of ISO standards. This paper will discuss the old shortcomings, their corrections, and the new features incorporated into the set of standards currently under final development and whose publication is expected next year.
Generalized surface contributions for misalignment sensitivity analysis
Analysis of surface-by-surface Seidel aberration contributions is the conventional approach for detecting surfaces sensitive to tolerances in the axially symmetric optical systems. Analogical tool for generalized systems is currently not provided in the optical design programs. Here we present an alternative numerical method to find surface contribution to the total wave aberration without limitation to the certain expansion order and with no constraints on system geometry. Surface contributions are further divided due to their origin into intrinsic, induced and transfer components. Each component is determined from the separate set of rays. In order to specify numerically obtained wavefront errors, the method is combined with Zernike fringe decomposition routine. As an example, sensitivity to tilt errors in a plane symmetric three mirror system consisting of convex mirrors with equal optical powers, was studied. The mirrors in the system are considered with spherical and toroidal basic shapes, with the freeform element placed on different positions, giving in total six configurations. We down select the least and the most sensitive system and present the detailed tolerance analysis.
Alignment of Optical Systems I
icon_mobile_dropdown
Optical alignment using a CGH and an autostigmatic microscope
We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.
Measurement of low-order aberrations with an autostigmatic microscope
The addition of a piezo-electric focusing stage and phase retrieval algorithms to a compact, adaptable autostigmatic microscope provides for both improved focus sensitivity during optical system alignment as well as the ability to measure low-order aberrations for system qualification. A description of the instrument and initial results are reported.
Review of Zernike polynomials and their use in describing the impact of misalignment in optical systems
The Zernike polynomials provide a generalized framework for analyzing the aberrations of non-rotationally symmetric optical systems with circular pupils. Even when systems are designed to be rotationally symmetric, fabrication and alignment errors will lead to non-rotationally symmetric aberrations. The properties of the Zernike polynomials are reviewed to illustrate their properties. Different indexing, normalization and ordering schemes are found in the literature and commercial software. He the schemes are compared to demonstrate some of the potential pitfalls of comparing Zernike polynomial results from different sources.
Ground to on-orbit alignment study of the WFIRST wide-field channel and resulting changes in the telescope architecture
John Hagopian, Nerses Armani, Lisa Bartusek, et al.
The Wide-Field Infrared Survey Telescope (WFIRST) mission[1] is the top-ranked large space mission in the New Worlds, New Horizon (NWNH) Decadal Survey of Astronomy and Astrophysics. WFIRST will settle essential questions in both exoplanet and dark energy research and will advance topics ranging from galaxy evolution to the study of objects within the galaxy. The WFIRST mission uses a repurposed 2.4-m Forward Optical Telescope assembly (FOA), which, when completed with new aft optics will be an Integrated Optical Assembly (IOA). WFIRST is equipped with a Wide Field Instrument (WFI) and a Coronagraph Instrument (CGI). An Instrument Carrier (IC) meters these payload elements together and to the spacecraft bus (S/C). A distributed ground system receives the data, uploads commands and software updates, and processes the data. After transition from the study phase, Pre-Phase-A (a.k.a., “Cycle 6”) design to NASA Phase A formulation, a significant change to the IOA was initiated; including moving the tertiary mirror from the instrument package to a unified three-mirror anastigmat (TMA) placement, that provides a wide 0.28-sq° instrumented field of view to the Wide Field Instrument (WFI). In addition, separate relays from the primary and secondary mirror feed the Wide Field Instrument (WFI) and Coronagraph Instrument (CGI). During commissioning the telescope is aligned using wavefront sensing with the WFI[2]. A parametric and Monte-Carlo analysis was performed, which determined that alignment compensation with the secondary mirror alone degraded performance in the other instruments. This led to the addition of a second compensator in the WFI optical train to alleviate this concern. This paper discusses the trades and analyses that were performed and resulting changes to the WFIRST telescope architecture.
SFR test fixture for hemispherical and hyperhemispherical camera systems
Optical testing of camera systems in volume production environments can often require expensive tooling and test fixturing. Wide field (fish-eye, hemispheric and hyperhemispheric) optical systems create unique challenges because of the inherent distortion, and difficulty in controlling reflections from front-lit high resolution test targets over the hemisphere. We present a unique design for a test fixture that uses low-cost manufacturing methods and equipment such as 3D printing and an Arduino processor to control back-lit multi-color (VIS/NIR) targets and sources. Special care with LED drive electronics is required to accommodate both global and rolling shutter sensors.
Alignment of Optical Systems II
icon_mobile_dropdown
Simultaneous angular alignment of segmented mirrors using sinusoidal pattern analysis
Heejoo Choi, Isaac Trumper, Matthew Dubin, et al.
A segmented mirror is one of the most promising solutions to build an extremely large aperture telescope to reveal the secrets of the universe. In this manuscript, we present a simultaneous angle alignment method for segmented mirrors. By taking the displayed sinusoidal pattern reflecting off the mirrors, the tip-tilt angles are measured with 0.8 μrad resolution for a flat mirror. Due to the efficient calculation using Fourier analysis, the total measurement time for seven flat mirrors is 0.07 s. In addition, a multiplexed sinusoidal pattern is adapted to resolve the intrinsic 2π ambiguity problem in a sinusoidal signal. The presented method can measure any number of segmented mirrors provided that the camera’s field of view can cover them all simultaneously.
Alignment and testing of critical interface fixtures for the James Webb Space Telescope
Kyle McLean, Paul Bagdanove, Joshua Berrier, et al.
NASA’s James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus, the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
Metrology for trending alignment of the James Webb Space Telescope before and after ambient environmental testing
Theo Hadjimichael, Raymond G. Ohl, Josh Berrier, et al.
NASA’s James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to measure changes in subassembly alignment, including the primary mirror segments, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ISIM.
Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies
Gregory Balonek, Joshua J. Brown, James E. Andre, et al.
The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.
High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment
F. Zibner, C. Fornaroli, J. Holtkamp, et al.
High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.
Poster Session
icon_mobile_dropdown
Calculation of lens alignment errors using the ray transfer matrices for the lens assembly system with an autocollimator and a rotation stage
Jiyoung Chu, Sungwhi Cho, Won Don Joo, et al.
One of the most popular methods for high precision lens assembly of an optical system is using an autocollimator and a rotation stage. Some companies provide software for calculating the state of the lens along with their lens assembly systems, but the calculation algorithms used by the software are unknown. In this paper, we suggest a calculation method for lens alignment errors using ray transfer matrices. Alignment errors resulting from tilting and decentering of a lens element can be calculated from the tilts of the front and back surfaces of the lens. The tilt of each surface can be obtained from the position of the reticle image on the CCD camera of the autocollimator. Rays from a reticle of the autocollimator are reflected from the target surface of the lens, which rotates with the rotation stage, and are imaged on the CCD camera. To obtain a clear image, the distance between the autocollimator and the first lens surface should be adjusted according to the focusing lens of the autocollimator and the lens surfaces from the first to the target surface. Ray propagations for the autocollimator and the tilted lens surfaces can be expressed effectively by using ray transfer matrices and lens alignment errors can be derived from them. This method was compared with Zemax simulation for various lenses with spherical or flat surfaces and the error was less than a few percent.
Self-compensation for trefoil aberration of symmetric dioptric microlithographic lens
The i-line microlithographic lens with unity magnification can be applied for the 3D integrated circuit steppers. The configuration of the microlithographic lens can be divided into three types: the dioptric type, the catoptric type, and the mixed catoptric and dioptric type. The dioptric type with unity magnification is typically designed as symmetry about the aperture stop on both image and object sides to counterbalance aberrations effectively. The lens mounting is substantially critical for the diffraction-limit microlithographic lens, because mounting stresses and gravity degrade image quality severely. The surface deformation of the kinematic mounting is ultimately low, but the disadvantage is high cost and complicated structures. The three-point mounting belongs to the semi-kinematic mounting without over constrain to decrease the surface deformation significantly instead of the ring mounting; however, the disadvantage is the trefoil aberration caused from large-aperture lenses due to gravity. Clocking lenses is a practical method of compensating the surface figure error for optimum wavefront aberration during pre-assembly phase, and then the time and cost spent on the post-assembly for fine alignment reduce much. The self-compensation by two pairs of symmetric lenses on both sides with 60-degree angle difference is beneficial to compensate the trefoil aberration effectively, and it is a costeffective method to achieve the wavefront error close to the design value. In this study, the self-compensation method for the trefoil deformation of large-aperture lenses employed in the symmetric dioptric microlithographic lens is successfully verified in simulation.
Raman laser spectrometer optical head: qualification model assembly and integration verification
Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA’s Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.