Proceedings Volume 10322

Seventh International Conference on Electronics and Information Engineering

cover
Proceedings Volume 10322

Seventh International Conference on Electronics and Information Engineering

Purchase the printed version of this volume at proceedings.com or access the digital version at SPIE Digital Library.

Volume Details

Date Published: 16 February 2017
Contents: 6 Sessions, 167 Papers, 0 Presentations
Conference: Seventh International Conference on Electronics and Information Engineering 2016
Volume Number: 10322

Table of Contents

icon_mobile_dropdown

Table of Contents

All links to SPIE Proceedings will open in the SPIE Digital Library. external link icon
View Session icon_mobile_dropdown
  • Front Matter: Volume 10322
  • Signal Processing
  • Image Processing
  • Communications and Networking
  • Electronics Technology
  • Artificial Intelligence and Algorithms
Front Matter: Volume 10322
icon_mobile_dropdown
Front Matter: Volume 10322
This PDF file contains the front matter associated with SPIE Proceedings Volume 10322, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Signal Processing
icon_mobile_dropdown
Study of sequential optimal control algorithm smart isolation structure based on Simulink-S function
The study of this paper focuses on smart isolation structure, a method for realizing structural vibration control by using Simulink simulation is proposed according to the proposed sequential optimal control algorithm. In the Simulink simulation environment, A smart isolation structure is used to compare the control effect of three algorithms, i.e., classical optimal control algorithm, linear quadratic gaussian control algorithm and sequential optimal control algorithm under the condition of sensor contaminated with noise. Simulation results show that this method can be applied to the simulation of sequential optimal control algorithm and the proposed sequential optimal control algorithm has a good ability of resisting the noise and better control efficiency.
Single-channel mixed signal blind source separation algorithm based on multiple ICA processing
Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time’s separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.
Online object tracking via bag-of-local-patches
Zhihui Wang, Chunjuan Bo, Dong Wang
As one of the most important tasks in computer vision, online object tracking plays a critical role in numerous lines of research, which has drawn a lot of researchers’ attention and be of many realistic applications. This paper develops a novel tracking algorithm based on the bag-of-local-patches representation with the discriminative learning scheme. In the first frame, a codebook is learned by applying the Kmeans algorithm to a set of densely sampled local patches of the tracked object, and then used to represent the template and candidate samples. During the tracking process, the similarities between the coding coefficients of the candidates and template are chosen as the likelihood values of these candidates. In addition, we propose effective model updating and discriminative learning schemes to capture the appearance change of the tracked object and incorporate the discriminative information to achieve a robust matching. Both qualitative and quantitative evaluations on some challenging image sequences demonstrate that the proposed tracker performs better than other state-of-the-art tracking methods.
Study on combat effectiveness of air defense missile weapon system based on queuing theory
Z. Q. Zhao, J. X. Hao, L. J. Li
Queuing Theory is a method to analyze the combat effectiveness of air defense missile weapon system. The model of service probability based on the queuing theory was constructed, and applied to analyzing the combat effectiveness of “Sidewinder” and “Tor-M1” air defense missile weapon system. Finally aimed at different targets densities, the combat effectiveness of different combat units of two types’ defense missile weapon system is calculated. This method can be used to analyze the usefulness of air defense missile weapon system.
Two-dimensional transport model of coupled Brownian particles driven by biharmonic forces and constant forces
Weixia Wu, Tao Meng
A directed transport model of coupled Brownian particles in a two-dimensional potential is established. In this model, the system of Brownian particles is driven by biharmonic forces and constant forces. By numerical simulation, the cooperative transport behaviours of the system are investigated. The results show that the average velocity of the system is significantly independent of the frequencies and intensities of the harmonic forces, the barrier height of the ratchet potential, coupling strength and noise intensity. The average velocity increases monotonically with increasing the intensities of the harmonic forces, and can reach some maximum values when the two frequencies are equal. In addition, the average velocity presents stochastic resonance and generalized resonance for noise intensity, coupling strength and the barrier height of the ratchet potential. Moreover, when a constant force is exerted on the ratchet potential direction, it will promote the directed transport of the system. But, when on the non-ratchet potential direction, the transport will not be affected.
Intelligent background noise reduction technology in cable fault locator using the magneto-acoustic synchronous method
JianWei Mi, JiFa Huang, XiaoLi Fang, et al.
The magneto-acoustic synchronous method has found wide application in accurate positioning of power cable fault due to its advantages of high accuracy and strong ability to reject interference. In the view of principle, the magneto-acoustic synchronous method needs to detect the discharge sound signal and electromagnetic signal emitted from the fault point, but the discharge sound signal is easy to be interfered by the ambient noise around and the magnetic sound synchronization. Therefore, it is challenging to quickly and accurately detect the fault location of cable especially in strong background noise environment. On the other hand, the spectral subtraction is a relatively traditional and effective method in many intelligent background noise reduction technologies, which is characterized by a relatively small computational cost and strong real-time performance. However, its application is limited because the algorithm displays poor performance in low Signal to Noise Ratio (SNR) environment. Aiming at the shortcoming of the spectral subtraction that de-noising effect is weak in low SNR environment, this paper proposes an improved spectral subtraction combining the magnetic sound synchronous principle and analyzing the properties of discharging sound. This method can accurately estimate noise in real time and optimize the performance of the basic spectral subtraction thus solving the problem that the magneto-acoustic synchronous method is unsatisfactory for positioning cable fault in the strong background noise environment.
Simulation calculation and characteristics analysis of coil motion noise
Yang Meng, Cong Peng, MingYe Fu, et al.
Coil motion noise is one of the largest noises in airborne electromagnetic exploration, which results from the variations of magnetic flux in the Earth’s magnetic accompanied by the receiver coil’s movement during the flight. On the assumption of attitude measurements, coil motion noise is calculated according to roll, pitch and yaw of the receiver coils. Therefore, the characteristics of coil motion noise are analyzed in time domain, frequency domain and time-frequency domain. And the Gaussianity of coil motion noise is also discussed using the histogram of data and its estimated Gaussian function, and another method termed normal probability paper. All of these are to lay the foundation for removal of coil motion noise in airborne electromagnetic detection.
Evaluation of electronic jamming effect based on seeker captive flight test and missile flight simulation
Wei Gao, Weitao Tie
In order to test and evaluate the jamming effect of electronic warfare weapons on missiles, a method based on seeker captive flight jamming test and missile flight simulation test is put forward, in which real data for the jamming effect of the electronic warfare weapon on seekers is obtained by seeker captive flight jamming test, and immitted into a missile digital simulation system to perform large numbers of missile flight simulation tests under jamming, then one could evaluate the jamming effect of the electronic warfare weapon on missiles according to the simulation test results. The method is demonstrated and validated by test and evaluation of the jamming effect of a smokescreen jamming device on TV guidance missiles. The results show that, the method proposed here not only overcomes the shortcomings of both pure digital simulation test and field test, but also combines their advantages, thus could be taken as an easy, economical and reliable method for testing and evaluating electronic jamming effect on missiles.
Agreement assessment in size measurement of hepatic metastases
Yangchen Zheng, Ibrahim Karademir, Leon Wise, et al.
The purpose of the study was to investigate patient-wise agreement among multiparametric magnetic resonance (MR) imaging sequences and radiologists, respectively, in the size assessment of hepatic metastases. A total of 30 liver metastases were identified from 20 patients and three radiologists independently measured the long and short axes for all metastases in T1-weighted, T2-weighted, diffusion-weighted imaging (DWI) with b of 0 and 800 s/mm2, and the apparent diffusion coefficient (ADC) map. We calculated the patient-wise intraclass correlation coefficient (ICCs) to estimate the interobserver and intersequence agreement in measured lesion size. Interobserver ICCs were 0.92-0.98 for different MR sequences and intersequence ICCs were 0.93-0.98. In conclusion, multiparametric MR imaging is a reliable tool for hepatic metastatic lesion measurement.
Structural strength analysis and fatigue life prediction of traction converter box in high-speed EMU
The method of building the FEA model of traction converter box in high-speed EMU and analyzing the static strength and fatigue strength of traction converter box based on IEC 61373-2010 and EN 12663 standards is presented in this paper. The load-stress correlation coefficients of weak points is obtained by FEA model, applied to transfer the load history of traction converter box to stress history of each point. The fatigue damage is calculated based on Miner's rule and the fatigue life of traction converter box is predicted. According to study, the structural strength of traction converter box meets design requirements.
Avionics equipment failure prediction based on genetic programming and grey model
Xiujian Deng, Qiang Luo, Yiyang Zhao, et al.
Avionics equipment failure prediction by conventional GM (Grey Model) may yield large forecasting errors. Combining GM (1, 1) model with genetic programming algorithm, a kind of GP-GM (1, 1) forecast model was established to minimize such errors. Forecasting sequence was calculated by means of GM (1, 1) model, then genetic programming algorithm was used to modify them further, and the degradation trend prediction of characteristic parameters of avionics equipment was realized. The validity of GP-GM (1, 1) prediction model was testified by tracking and forecasting the experiment data of avionics equipment in real environment.
Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine
Xudong Shi, Yaping Yin, Jialin Wang, et al.
A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.
Modal and harmonic response analysis of cutter head of juice extractor
Jinkuan Li, Zaixin Liu, Dingli Zhou, et al.
A cutter head is one of the most important parts in juice extractor, because whether the juice extractor is reliable or secure enough is directly to the cutter head natural frequency as well as its mode shape size. Cutter head is took as an example in this paper. By establishing the vibration dynamics equations and using finite element method, the 6 modal of the cutter head is analyzed. The range of the rotate speed to keep safety is obtained when it is working. The result shows that the highest rotate speed of the cutter head is far lower than its first order critical speed which avoids the sympathetic vibration efficiently, and the cutter head is designed relatively rational. The harmonic response of the cutter head is analyzed based on the result of modal analysis. The resonant frequency and amplitude of cutter head are obtained. They can provide a theoretical basis for the further design optimization of the cutter head.
Colorimetric characterization of LCD based on constrained least squares
Tong LI, Kai Xie, Qiaojie Wang, et al.
In order to improve the accuracy of colorimetric characterization of liquid crystal display, tone matrix model in color management modeling of display characterization is established by using constrained least squares for quadratic polynomial fitting, and find the relationship between the RGB color space to CIEXYZ color space; 51 sets of training samples were collected to solve the parameters, and the accuracy of color space mapping model was verified by 100 groups of random verification samples. The experimental results showed that, with the constrained least square method, the accuracy of color mapping was high, the maximum color difference of this model is 3.8895, the average color difference is 1.6689, which prove that the method has better optimization effect on the colorimetric characterization of liquid crystal display.
Research on the displacement control method of asynchronous modular contactor
Gong He, Zong Ming
Ac contactor is a kind of low voltage electrical appliances with large usage and wide application. Because of the frequent operation, contactor life must be long enough to ensure the reliable operation of power system. The electrical life of the contactor, as the key to affect the service life of the contactor, is mainly affected by the arc developed in the breaking and closing course. This paper concentrates on a new type of asynchronous modular contactor. To get the contactor movement characteristics, the dynamic model of the electromagnetic system is established by MATLAB/SIMULINK. Then, according to the displacement curve of contactor, the breaking process and closing process is planned. The thought of closed loop control, by adjusting the parameters of PID controller, enables the contactor to operate as the planning displacement curve. In addition, to achieve no arc or micro arc breaking and no bounce or micro bounce closing , a displacement closed loop control system for contactor is designed.
Numerical analysis of interface debonding detection in bonded repair with Rayleigh waves
Ying Xu, BingCheng Li, Miaomiao Lu
This paper studied how to use the variation of the dispersion curves of Rayleigh wave group velocity to detect interfacial debonding damage between FRP plate and steel beam. Since FRP strengthened steel beam is two layers medium, Rayleigh wave velocity dispersion phenomenon will happen. The interface debonding damage of FRP strengthened steel beam have an obvious effect on the Rayleigh wave velocity dispersion curve. The paper first put forward average Euclidean distance and Angle separation degree to describe the relationship between the different dispersion curves. Numerical results indicate that there is a approximate linear mapping relationship between the average Euclidean distance of dispersion curves and the length of interfacial debonding damage.
Design of a laser navigation system for the inspection robot used in substation
Jing Zhu, Yanhe Sun, Deli Sun
Aimed at the deficiency of the magnetic guide and RFID parking system used by substation inspection robot now, a laser navigation system is designed, and the system structure, the method of map building and positioning are all introduced. The system performance is tested in a 500kV substation, and the result show that the repetitive precision of navigation system is precise enough to help the robot fulfill inspection tasks.
Effects of electromagnetic radiation on the hemorheology of rats
Zhiwei Huang, Tian Tian, Bo Xiao, et al.
The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.
Effects of welding technology on welding stress based on the finite element method
Jianke Fu, Jun Jin
Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.
Experimental study of lap splice bolted connection
Dehui Zhao, Lishan Tian, Wenqiang Jiang, et al.
The bolted connection is prone to slip under external load in the lattice transmission tower, which will affect the internal forces and deformation of tower. In order to better simulate the effect of bolt connection slippage on transmission tower, the load deformation relationship should be established. In this paper, the single lap splice bolt connection under tension load is tested and the load displacement curve is obtained. Furthermore, the existing model of single lap splice bolted connection is modified, which will plays an important role in the influence of the bolt slippage of the transmission lines towers more accurately and reasonably.
Recognized simulation of space locomotive target based on sky background
Space moving object recognition and tracking is an important research topic in computer vision. It has broad application prospects in space exploration, detection of traffic flow, military field, automatic control and other fields. This paper aims to propose a new space target recognition algorithm, and use this algorithm to identify the motion trajectory simulation of a certain object in the universe.
SFM signal parameter estimation based on an enhanced DSFMT algorithm
Lei Chen, Xingguang Li, Dianren Chen
It is proposed a SFM signal parameter estimation method based on the Enhanced DSFMT(EDSFMT) algorithm and provided the derivation of transformation formulas in this paper .Analysis and simulations were performed, which proved its capability of arbitrary multi-component SFM signal parameter estimation.
System simulation for an untreated sewage source heat pump (USSHP) in winter
Na Qin, Peng Z. Hao
The paper discusses the system characteristics of an untreated sewage source heat pump in winter. In this system, the sewage enters into the evaporator directly. The variable parameters to control the system contain the sewage temperature at evaporator inlet and the water temperature at condenser inlet. It is found that most parameters, except the condensation heat transfer coefficient, change in the form of sine wave the same as the sewage temperature at inlet. The heating load and consumed power are 12.9kW and 3.45kW when the sewage temperature at inlet is 13°C. COP is about 3.75 in the range of the sewage temperature at inlet of 12-13°C.
The design of multi temperature and humidity monitoring system for incubator
Junyu Yu, Peng Xu, Zitao Peng, et al.
Currently, there is only one monitor of the temperature and humidity in an incubator, which may cause inaccurate or unreliable data, and even endanger the life safety of the baby. In order to solve this problem,we designed a multi-point temperature and humidity monitoring system for incubators. The system uses the STC12C5A60S2 microcontrollers as the sender core chip which is connected to four AM2321 temperature and humidity sensors. We select STM32F103ZET6 core development board as the receiving end,cooperating with Zigbee wireless transmitting and receiving module to realize data acquisition and transmission. This design can realize remote real-time observation data on the computer by communicating with PC via Ethernet. Prototype tests show that the system can effectively collect and display the information of temperature and humidity of multiple incubators at the same time and there are four monitors in each incubator.
The implementation of high speed digital PSD in optically pumping magnetometers
Jun Chen, Defu Cheng, Zhijian Zhou, et al.
The 4He optically pumping magnetometer is a kind of high resolution instrument for measuring magnetic field intensity. Its response speed cannot meet the requirements in some experiments. By analyzing many factors, Phase Sensitive Detector (PSD) which is the key part of the lock-in amplifier processes data at a very slow speed is found. To improve its performance, this paper introduces a parallel digital phase sensitive detector based on coordinate rotation digital computer (CORDIC) algorithm. The cost time of the parallel digital phase sensitive detector is only 5.1% of the previous one. It can greatly enhance the response speed of the 4He optically pumping magnetometer.
Two kinds of active impulsive noise control algorithms based on sigmoid transformation
Pei Li, Xuefeng Bai, Yongjian Ma
In this thesis, active noise control of symmetric α stable (SαS) distribution impulsive noise has been studied. Two kinds of algorithm based on Sigmoid transformation of error signal have been proposed. The convergence condition of algorithms also has been analyzed. It does not need the parameter selection and thresholds estimation. Computer simulations were carried out to validate algorithm. Simulation results have proven the effectiveness of the algorithm and achieved the expected control effect. Compared to the previous algorithm, the convergence speed is improved.
Design and implementation of a distributed Complex Event Processing system
Yan Li, Yanlei Shang
Making use of the massive events from event sources such as sensors and bank transactions and extract valuable information is of significant importance. Complex Event Processing (CEP), a method of detecting complex events from simple events stream, provides a solution of processing data in real time fast and efficiently. However, a single node CEP system can’t satisfy requirements of processing massive event streams from multitudinous event sources. Therefore, this article designs a distributed CEP system, which combine Siddhi, a CEP engine, and Storm, a distributed real time computation architecture. This system can construct topology automatically based on the event streams and execution plans provided by users and process the event streams parallel. Compared with single node complex event system, the distributed system can achieve better performance.
Design of monitoring system for mail-sorting based on the Profibus S7 series PLC
W. Zhang, S. H. Jia, Y. H. Wang, et al.
With the rapid development of the postal express, the workload of mail sorting is increasing, but the automatic technology of mail sorting is not mature enough. In view of this, the system uses Siemens S7-300 PLC as the main station controller, PLC of Siemens S7-200/400 is from the station controller, through the man-machine interface configuration software MCGS, PROFIBUS-DP communication, RFID technology and mechanical sorting hand achieve mail classification sorting monitoring. Among them, distinguish mail-sorting by scanning RFID posted in the mail electronic bar code (fixed code), the system uses the corresponding controller on the acquisition of information processing, the processed information transmit to the sorting manipulator by PROFIBUS-DP. The system can realize accurate and efficient mail sorting, which will promote the development of mail sorting technology.
An object tracking algorithm with embedded gyro information
The high speed attitude maneuver of Unmanned Aerial Vehicle (UAV) always causes large motion between adjacent frames of the video stream produced from the camera fixed on the UAV body, which will severely disrupt the performance of image object tracking process. To solve this problem, this paper proposes a method that using a gyroscope fixed on the camera to measure the angular velocity of camera, and then the object position’s substantial change in the video stream is predicted. We accomplished the object tracking based on template matching. Experimental result shows that the object tracking algorithm’s performance is improved in its efficiency and robustness with embedded gyroscope information.
Acceleration analysis of multi-rigid body system and its application for vehicle based stabilized platform system
Xiao Liu, Erjuan Luo, Lei Jia, et al.
The traditional representation of acceleration of a rigid body is given in terms of the angular acceleration and linear acceleration of a point attached to the rigid body. Since this representation has no coordinate invariance, the acceleration transformation of a multi-rigid-body system is complicated. In this paper, the physical meaning of the time derivative of a twist is investigated. It reveals that the rigid-body acceleration comprises the angular acceleration and tangent acceleration of a point which is attached to the rigid body and instantaneously coincident with the origin of frame in use. Their composition presents a six-dimensional representation of the rigid-body acceleration, which is verified to be of coordinate invariance. Based on the representation, the transformation of the rigid-body accelerations is performed conveniently, and the corresponding formula of composition accelerations of one rigid body relative to any other bodies in a multi-rigid-body system is presented. The method is then extended to the application of a vehicle stabilized platform system. The method is verified to be effective by analyzing the virtual prototype of the vehicle-based stabilized platform system. This paper builds a bridge for the six-dimensional rigid-body acceleration from theory achievements to practical application.
Attitude angle anti-windup control of small size unmanned helicopter
Taizhou Shao, Haihui Long, Jiankang Zhao, et al.
This paper researches the small-size unmanned helicopter attitude control problem with actuator saturation limit. Traditional approach for this problem is often based on an accurate dynamic model which is complicated and difficult to achieve in engineering. In this paper, we propose an anti-windup PID approach which does not rely on sophicated helicopter dynamic model. The anti-windup PID controller is established by adding a phase-lead compensator to the conventional PID controller. The performance and merits of this proposed controller are exemplified by the simulations between the conventional PID controller and the anti-windup PID controller.
Aircraft recognition based on the discrepancy of polygon intersection area
Xiujian Deng, Yanfang Wang, Qi Feng
In this paper, a new algorithm that based on discrepancy of polygon intersection area for aircraft recognition is presented. The recognition algorithm process involves three parts: generating polygon of aircraft, placing overlapping plane polygons and computing the area of total intersecting polygons. For the purpose of getting the polygon of aircraft, the picture that was ready to be recognized has gone through a series of pre-processing and the smallest circumference polygon algorithm was used to get approximate polygon of the target contour. To make the two compared polygons have the approximate area, the similar principle was utilized. The matching procedure was divided into four steps including computing intersecting points, computing polygon intersecting sets, computing the intersecting area and getting the intersecting rate to recognize the aircraft. The data structure of algorithm is based on doubly liked list principle. A mass of simulations illustrate that the proposed algorithm is effective and reasonable.
A modified descriptor for blob detection in nonlinear scale space
In this paper, we present a novel binary descriptor with orientation, which called Intensity-Centroid LDB (IC-LDB). This descriptor resolves the problems that the current non-binary descriptors are too compute-expensive to achieve real-time performance in the nonlinear scale space and that the original Local Difference Binary (LDB) descriptors do not have an orientation component to keep rotation invariant. Experimental results demonstrate that IC-LDB proposed in this paper was faster than previously non-binary descriptors which were used in nonlinear scale space, while performing as well in many situations.
Self-organizing map and its application in the analysis of ambient noise characteristics
Chunxia Meng, Guijuan Li, Shuwei Che, et al.
The Self-organizing map (SOM) is an unsupervised neural network based on competitive learning, and can solve the problem that the center of clustering is unknown. SOM’s theory and the implementation of algorithm are studied in this paper. Simulating example is given to approve the feasibility of SOM in characteristic assessment for multivariate sample. The Ambient sea noise measurement is made in August 2014 on some sea of China. The total source level was forecasted using “ROSS formula” and the sailing information. The statistical variability of broadband ambient noise at frequencies between 20Hz and 31.5 kHz is obtained using SOM. The comparison between measured sound pressure and forecasting pressure is given, and the preliminary analysis of the relationship between ambient noise level and vessels is carried out. The results provide the technical reference to understand the temporal and spatial statistical variability of ambient noise, and are an efficient tool in assessing the potential effect of shipping noise on marine mammals in the special sea area.
Research on video target tracking technology based on improved SIFT algorithm
Zhemin Zhuang, Zhijie Guo, Ye Yuang
A novel target tracking algorithm based on improved SIFT (Scale Invariant Feature Transform,SIFT) algorithm is proposed in this paper. In order to improve real-time performance, the processing neighborhood of SIFT has been improved to decrease the complexity of calculation, and the dimension of the SIFT vector is set from 128 to 40. Simulations and experiments show this improved algorithm brings us low computation complexity and high tracking accuracy and robustness.
Image Processing
icon_mobile_dropdown
Array high-sensitivity room temperature coil system for SNMR detection in shallow depth
Tingting Lin, Kunyu Xie, Siyuan Zhang, et al.
The noninvasive method of surface nuclear magnetic resonance (SNMR) is a geophysical technique that is directly sensitive to hydrogen protons, besides it can exploit the NMR phenomenon for a quantitative determination of the subsurface groundwater distribution. Traditionally, SNMR utilizes large surface coils for both transmitting excitation pulses and recording the groundwater response. While, in recent research, a low Tc-SQUIDs is taken as a new sensor to replace the large receiving coil (Rx), which performing the best sensitivity for the shallow depth. Nevertheless, SQUID is with the problems of flux trapping and operational difficulties. In this paper, we introduce a room temperature coil system. A Cu coil with diameter of 1 m and a low noise preamplifier was systematically investigated and reached a sensitivity of 0.2fT/Hz1/2.Four preamplifiers are chosen for optimizing the pickup coils. The resolution studies for the array coil systems were performed, and the optimum distance between the adjacent pickup coils to achieve a better experimental results especially for the shallow depth. Our study enable the further use of the room temperature coil for SNMR shallow depth detections.
Image segmentation on adaptive sub-region smoothing
Junruo Gao, Xin Liu, Kun He
To improve the performance of the active contour segmentation on real images, a new segmentation method is proposed. In this model, we construct a function about Gaussian variance according to sub-regions intensity. Further, to avoid the curve vanishing, we design the convergence condition based on the confidence level of segmentation sub-regions. Experimental results show that the proposed method is less sensitive to noise and can suppress inhomogeneous intensity regions efficiently.
Half-blind remote sensing image restoration with partly unknown degradation
Meihua Xie, Fengxia Yan
The problem of image restoration has been extensively studied for its practical importance and theoretical interest. This paper mainly discusses the problem of image restoration with partly unknown kernel. In this model, the degraded kernel function is known but its parameters are unknown. With this model, we should estimate the parameters in Gaussian kernel and the real image simultaneity. For this new problem, a total variation restoration model is put out and an intersect direction iteration algorithm is designed. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measurement (SSIM) are used to measure the performance of the method. Numerical results show that we can estimate the parameters in kernel accurately, and the new method has both much higher PSNR and much higher SSIM than the expectation maximization (EM) method in many cases. In addition, the accuracy of estimation is not sensitive to noise. Furthermore, even though the support of the kernel is unknown, we can also use this method to get accurate estimation.
A self-adaptive image encryption scheme with half-pixel interchange permutation operation
Ruisong Ye, Li Liu, Minyu Liao, et al.
A plain-image dependent image encryption scheme with half-pixel-level swapping permutation strategy is proposed. In the new permutation operation, a pixel-swapping operation between four higher bit-planes and four lower bit-planes is employed to replace the traditional confusion operation, which not only improves the conventional permutation efficiency within the plain-image, but also changes all the pixel gray values. The control parameters of generalized Arnold map applied for the permutation operation are related to the plain-image content and consequently can resist chosen-plaintext and known-plaintext attacks effectively. To enhance the security of the proposed image encryption, one multimodal skew tent map is applied to generate pseudo-random gray value sequence for diffusion operation. Simulations have been carried out thoroughly to demonstrate that the proposed image encryption scheme is highly secure thanks to its large key space and efficient permutation-diffusion operations.
An airport surface surveillance solution based on fusion algorithm
Jianliang Liu, Yang Xu, Xuelin Liang, et al.
In this paper, we propose an airport surface surveillance solution combined with Multilateration (MLAT) and Automatic Dependent Surveillance Broadcast (ADS-B). The moving target to be monitored is regarded as a linear stochastic hybrid system moving freely and each surveillance technology is simplified as a sensor with white Gaussian noise. The dynamic model of target and the observation model of sensor are established in this paper. The measurements of sensors are filtered properly by estimators to get the estimation results for current time. Then, we analysis the characteristics of two fusion solutions proposed, and decide to use the scheme based on sensor estimation fusion for our surveillance solution. In the proposed fusion algorithm, according to the output of estimators, the estimation error is quantified, and the fusion weight of each sensor is calculated. The two estimation results are fused with weights, and the position estimation of target is computed accurately. Finally the proposed solution and algorithm are validated by an illustrative target tracking simulation.
An analytical method for prediction of stability lobes diagram of milling of large-size thin-walled workpiece
Jiming Yao, Bin Lin, Yu Guo
Different from common thin-walled workpiece, in the process of milling of large-size thin-walled workpiece chatter in the axial direction along the spindle is also likely to happen because of the low stiffness of the workpiece in this direction. An analytical method for prediction of stability lobes of milling of large-size thin-walled workpiece is presented in this paper. In the method, not only frequency response function of the tool point but also frequency response function of the workpiece is considered.
Compressed sensing video processing based on stagewise weak selection and backtracking
Zhemin Zhuang, Fenlan Li, Ye Yuan
The widespread use of mobile video raises higher requirements for video coding. As video coding can be seen as a Simultaneous Sparse Approximation (SSA) problem, a novel algorithm called Backtracking Simultaneous Stagewise Orthogonal Matching Pursuit (BSStOMP) is proposed in the paper. The algorithm can obtain multiple atoms with highly comprehensive correlation at each iteration through simultaneous stagewise weak selection. Moreover, in order to improve recovery quality, local backtracking strategy is employed to optimize the selected atoms. The experiments results verified the effectiveness and practicality of our algorithm.
Computer analysis of three-dimensional morphological characteristics of the bile duct
Jinyuan Ma, Houjin Chen, Yahui Peng, et al.
In this paper, a computer image-processing algorithm for analyzing the morphological characteristics of bile ducts in Magnetic Resonance Cholangiopancreatography (MRCP) images was proposed. The algorithm consisted of mathematical morphology methods including erosion, closing and skeletonization, and a spline curve fitting method to obtain the length and curvature of the center line of the bile duct. Of 10 cases, the average length of the bile duct was 14.56 cm. The maximum curvature was in the range of 0.111~2.339. These experimental results show that using the computer image-processing algorithm to assess the morphological characteristics of the bile duct is feasible and further research is needed to evaluate its potential clinical values.
Design of embedded intelligent monitoring system based on face recognition
In this paper, a new embedded intelligent monitoring system based on face recognition is proposed. The system uses Pi Raspberry as the central processor. A sensors group has been designed with Zigbee module in order to assist the system to work better and the two alarm modes have been proposed using the Internet and 3G modem. The experimental results show that the system can work under various light intensities to recognize human face and send alarm information in real time.
Efficient content-based low-altitude images correlated network and strips reconstruction
Haiqing He, Qi You, Xiaoyong Chen
The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.
Handwritten and printed text distinction by using stroke thickness features
Hong Ding, Huiqun Wu, Jun Wang, et al.
This paper presents an algorithm to identify the handwritten and the printed texts among document images. The characteristic of stroke thickness is used and a kind of calculating method is designed for this feature. The proposed method, which is clearly defined and easily realized, calculates the stroke thickness feature by counting edge pixels in a neighborhood. Document images are generally divided into text lines or characters. However, the line and the character are not conducive to the judgment between handwritten and printed text distinction. The line is too rough and the character is too small. Using the stroke thickness characteristics, combined with layout analysis, the text line in the document image is further divided into the area of uniform thickness. This kind of area is more detailed than text line and larger than a single character. So more stable features can be extracted from it. Last, the features of these regions are divided by using SVM. The proposed algorithm obtained better performance in the document image database including handwritten and printed texts.
High speed image acquisition system of absolute encoder
Jianxiang Liao, Xin Chen, Xindu Chen, et al.
Absolute optical encoder as a product of optical, mechanical and electronic integration has been widely used in displacement measuring fields. However, how to improve the measurement velocity and reduce the manufacturing cost of absolute optical encoder is the key problem to be solved. To improve the measurement speed, a novel absolute optical encoder image acquisition system is proposed. The proposed acquisition system includes a linear CCD sensor is applied for capturing coding pattern images, an optical magnifying system is used for enlarging the grating stripes, an analog-digital conversion(ADC) module is used for processing the CCD analogy signal, a field programmable gate array(FPGA) device and other peripherals perform driving task. An absolute position measurement experiment was set up to verify and evaluate the proposed image acquisition system. The experimental result indicates that the proposed absolute optical encoder image acquisition system has the image acquisition speed of more than 9500fp/s with well reliability and lower manufacture cost.
Image matching with an improved descriptor based on SIFT
In this paper, we propose a novel 30-dimension descriptor named SIFTRO(SIFT of Ring Order) to promote the matching speed, which is generated from 3 local ring areas. A new element reordering method is presented to ensure the descriptor’s rotation invariance. To obtain the best scale factor for SIFTRO descriptor, the weight hierarchy decision model based on AHP is designed. The experiments show that the SIFTRO descriptor inherits the advantages of the invariance to image scaling, rotation and affine, and it also speeds up greatly in image matching, while the precision is improved compared with that of original SIFT.
Material appearance acquisition from a single image
Xu Zhang, Shulin Cui, Hanwen Cui, et al.
The scope of this paper is to present a method of material appearance acquisition(MAA) from a single image. In this paper, material appearance is represented by spatially varying bidirectional reflectance distribution function(SVBRDF). Therefore, MAA can be reduced to the problem of recovery of each pixel’s BRDF parameters from an original input image, which include diffuse coefficient, specular coefficient, normal and glossiness based on the Blinn-Phone model. In our method, the workflow of MAA includes five main phases: highlight removal, estimation of intrinsic images, shape from shading(SFS), initialization of glossiness and refining SVBRDF parameters based on IPOPT. The results indicate that the proposed technique can effectively extract the material appearance from a single image.
Pavement crack identification based on automatic threshold iterative method
Guofeng Lu, Qiancheng Zhao, Jianguo Liao, et al.
Crack detection is an important issue in concrete infrastructure. Firstly, the accuracy of crack geometry parameters measurement is directly affected by the extraction accuracy, the same as the accuracy of the detection system. Due to the properties of unpredictability, randomness and irregularity, it is difficult to establish recognition model of crack. Secondly, various image noise, caused by irregular lighting conditions, dark spots, freckles and bump, exerts an influence on the crack detection accuracy. Peak threshold selection method is improved in this paper, and the processing of enhancement, smoothing and denoising is conducted before iterative threshold selection, which can complete the automatic selection of the threshold value in real time and stability.
Research and application of online measurement system of tire tread profile in automobile tire production
To improve the measuring efficiency of width and thickness of tire tread in the process of automobile tire production, the actual condition for the tire production process is analyzed, and a fast online measurement system based on moving tire tread of tire specifications is established in this paper. The coordinate data of tire tread profile is acquired by 3D laser sensor, and we use C# language for programming which is an object-oriented programming language to complete the development of client program. The system with laser sensor can provide real-time display of tire tread profile and the data to require in the process of tire production. Experimental results demonstrate that the measuring precision of the system is ≤ 1mm, it can meet the measurement requirements of the production process, and the system has the characteristics of convenient installation and testing, system stable operation.
Simulation of computed tomography dose based on voxel phantom
Chunyu Liu, Xiangbo Lv, Zhaojun Li
Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.
The fuel cell components segmentation and visualization based on CT image
This paper focuses on the image segmentation and three-dimensional visualization based on the CT images of fuel cell. According to the analysis of a variety of traditional edge detection algorithms, Sobel operator and Canny operator are more appropriate on edge detection of the fuel cell tomographic images, and the results of applying them on edge detection of the images are also compared. By analyzing the characteristics of the fuel cell tomographic image grayscale of a particular environment and improving Canny operator, a new method ---- image segementation algorithm for edge detection based on multi-threshold, is designed and implemented, which is also used on two-dimensional image segmentation. Additionally, in order to facilitate a more intuitive observing the fuel cell internal components, this article uses Ray Casting, a commonly used direct volume rendering algorithm of three-dimensional visualization, to rebuild the fuel cell, and applies the multi-threshold image segmentation method on the three-dimensional images to distinguish display the components of liquid water an gas.
The imaging algorithm of millimeter-wave forward-looking SAR
Lei Chen, Xingguang Li, Dianren Chen
It is studied a new type millimeter-wave forward-looking synthetic aperture radar (SAR) imaging algorithm in this paper, analyzes the imaging principle, echo model of point target is given, deduced the forward-looking synthetic aperture radar RD imaging algorithm, and using MATLAB imaging simulation of point target in 6, a point target simulation results from the peak of 64 * 64 slice contour and azimuth, distance to the envelope of the imaging results were analyzed, found that the distance and azimuth focusing effect is good and the side lobe does not appear distorted and tilted, proved that the system of the millimeter wave synthetic aperture radar imaging of forward-looking , simulation results demonstrate the validity of the system.
The two-dimensional code image recognition based on wavelet transform
Hao Wan, Cheng Peng
With the development of information technology, two-dimensional code is more and more widely used. In the technology of two-dimensional code recognition, the noise reduction of the two-dimensional code image is very important. Wavelet transform is applied to the noise reduction of two-dimensional code, and the corresponding Matlab experiment and simulation are made. The results show that the wavelet transform is simple and fast in the noise reduction of two-dimensional code. And it can commendably protect the details of the two-dimensional code image.
Ultrasound strain imaging using Barker code
Hui Peng, Juhong Tie, Dequan Guo
Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.
Conductivity depth imaging of Airborne Electromagnetic data with double pulse transmitting current based on model fusion
Jing Li, Mei Dou, Yiming Lu, et al.
The airborne electromagnetic (AEM) systems have been used traditionally in mineral exploration. Typically the system transmits a single pulse waveform to detect conductive anomaly. Conductivity-depth imaging (CDI) of data is generally applied in identifying conductive targets. A CDI algorithm with double-pulse transmitting current based on model fusion is developed. The double-pulse is made up of a half-sine pulse of high power and a trapezoid pulse of low power. This CDI algorithm presents more shallow information than traditional CDI with a single pulse. The electromagnetic response with double-pulse transmitting current is calculated by linear convolution based on forward modeling. The CDI results with half-sine and trapezoid pulse are obtained by look-up table method, and the two results are fused to form a double-pulse conductivity-depth imaging result. This makes it possible to obtain accurate conductivity and depth. Tests on synthetic data demonstrate that CDI algorithm with double-pulse transmitting current based on model fusion maps a wider range of conductivities and does a better job compared with CDI with a single pulse transmitting current in reflecting the whole geological conductivity changes.
Decision-making method for railway emergency based on combination weighting and cloud model
Xiaoqin Liu, Fuzhang Wang, Pu Wang
Aiming at the problems of randomness and fuzziness of railway emergency, this paper introduces a decision-making method of railway emergency based on combination weighting and cloud model. Firstly, In order to enhance the subjective and objective consistency of combined weights, the adjustment equations of weight coefficient are established with the Euclidean distance, then combined weights are calculated by means of improved analytic hierarchy process(IAHP) and entropy weight method. Secondly, the decision-making information of experts is converted into the cloud parameters of indexes with cloud model, and the cloud parameters of alternatives are obtained by integrating the combined weights and cloud parameters of indexes. Thirdly, the best alternative is obtained by analyzing and comparing the cloud parameters or cloud images of alternatives. Finally, the effectiveness and feasibility of the method are verified by a case.
Concealed objects detection based on FWT in active millimeter-wave images
Kun Du, Lu Zhang, Wei Chen, et al.
Active millimeter-wave (MMW) near-filed human imaging is a means for concealed objects detection. A method of concealed objects detection based on fast wavelet transforms (FWT) in the usage of active MMW images is presented as a result of image characteristics, which includes high resolution, characteristics varying in different parts of the human, imaging influenced among human, concealed objects and other objects, and different textures of concealed objects. Images segmentation utilizing results of edge detection based on FWT is conducted and preliminary segmentation results can be obtained. Some kinds of concealed objects according to comparing gray value of concealed objects to human average gray value can be detected in this paper. The experiments of concealed objects on images of actual acquisition are conducted with a result of accurate rate 80.92% and false alarm rate 11.78%, illustrating the effectiveness of the method proposed in this paper.
Face recognition using composite classifier with 2DPCA
In the conventional face recognition, most researchers focused on enhancing the precision which input data was already the member of database. However, they paid less necessary attention to confirm whether the input data belonged to database. This paper proposed an approach of face recognition using two-dimensional principal component analysis (2DPCA). It designed a novel composite classifier founded by statistical technique. Moreover, this paper utilized the advantages of SVM and Logic Regression in field of classification and therefore made its accuracy improved a lot. To test the performance of the composite classifier, the experiments were implemented on the ORL and the FERET database and the result was shown and evaluated.
Design of control system of combine harvester louver sieve angle based on ARM
Jin Chen, Yangyang Cai, Xuan Chen, et al.
In view of the disadvantages of the traditional control methods of combine harvester louver sieve, an electronic control system of louver sieve is designed to replace the traditional mechanical regulation structure, and it changes the old way of manipulating louver sieve. In order to achieve the goal control effect more accurately and quickly, the fuzzy adaptive PID control method and the key control design method based on the finite state machine is proposed during the control process. The tests show that the control system can reach louver sieve electric control goals, and can obtain accurate and stable control effect.
The anti-fatigue driving system design based on the eye blink detect
Shuyu Yang, Xin Song, Li Zhang, et al.
Traffic accident is one of the severe social problems in the world, but the appraisal and prevention of the fatigue driving is still a difficult problem that can not be solved. This paper is to study the results of fatigue driving and the existing antifatigue driving products, collecting brain wave with the TGAM (ThinkGear AM) Brain Wave Sensor Chip. We analyze the collected waveform based on eye blink detect algorithm to work out current situation of the driver. According to the analysis results, Sound Module and controllable speed car will make a series of feedback. Finally, an effective Anti- Fatigue Driving System is designed based on all above.
Oblique low-altitude image matching using robust perspective invariant features
Haiqing He, Jing Du, Xiaoyong Chen, et al.
Compared with vertical photogrammtry, oblique photogrammetry is radically different for images acquired from sensor with big yaw, pitch, and roll angles. Image matching is a vital step and core problem of oblique low-altitude photogrammetric process. Among the most popular oblique images matching methods are currently SIFT/ASIFT and many affine invariant feature-based approaches, which are mainly used in computer vision, while these methods are unsuitable for requiring evenly distributed corresponding points and high efficiency simultaneously in oblique photogrammetry. In this paper, we present an oblique low-altitude images matching approach using robust perspective invariant features. Firstly, the homography matrix is estimated by a few corresponding points obtained from top pyramid images matching in several projective simulation. Then images matching are implemented by sub-pixel Harris corners and descriptors after shape perspective transforming on the basis of homography matrix. Finally, the error or gross error matched points are excluded by epipolar geometry, RANSAC algorithm and back projection constraint. Experimental results show that the proposed approach can achieve more excellent performances in oblique low-altitude images matching than the common methods, including SIFT and SURF. And the proposed approach can significantly improve the computational efficiency compared with ASIFT and Affine-SURF.
Communications and Networking
icon_mobile_dropdown
Removal of correlated noise online for in situ measurements by using multichannel magnetic resonance sounding system
Tingting Lin, Siyuan Zhang, Yang Zhang, et al.
Compared with the other geophysical approaches, magnetic resonance sounding (MRS) technique is direct and nondestructive in subsurface water exploration. It provides water content distribution and estimates hydrogeological properties. The biggest challenge is that MRS measurement always suffers bad signal-to-noise ratio, and it can be carried out only far from sources of noise. To solve this problem, a series of de-noising methods are developed. However, most of them are post-processing, leading the data quality uncontrolled for in situ measurements. In the present study, a new approach that removal of correlated noise online is found to overcome the restriction. Based on LabVIEW, a method is provided to enable online data quality control by the way of realizing signal acquisition and noise filtering simultaneously. Using one or more reference coils, adaptive noise cancellation based on LabVIEW to eliminate the correlated noise is available for in situ measurements. The approach was examined through numerical simulation and field measurements. The correlated noise is mitigated effectively and the application of MRS measurements is feasible in high-level noise environment. The method shortens the measurement time and improves the measurement efficiency.
An OADM based on phase-shifted fiber grating and Mach-Zehnder interferometer
Yonglin Huang, Qichen Xiao
In order to study the properties of phase-shifted fiber Bragg grating, The reflection spectrum characteristic of phase-shifted fiber grating with different fiber grating length, different refractive index modulation depth and different shift angle are analyzed using transmission matrix method. A new scheme of optical add-drop multiplexer based on phase-shifted fiber Bragg grating and Mach-Zehnder interferometer is proposed and simulated. The reflection spectrum of phase-shifted fiber grating is optimized using Gauss apodization function. Two channel signals can be dropped simultaneously. This study may provide theory instruction for the application of the OADM.
A service-oriented data access control model
Wei Meng, Fengmin Li, Juchen Pan, et al.
The development of mobile computing, cloud computing and distributed computing meets the growing individual service needs. Facing with complex application system, it’s an urgent problem to ensure real-time, dynamic, and fine-grained data access control. By analyzing common data access control models, on the basis of mandatory access control model, the paper proposes a service-oriented access control model. By regarding system services as subject and data of databases as object, the model defines access levels and access identification of subject and object, and ensures system services securely to access databases.
A ZigBee wireless networking for remote sensing applications in hydrological monitoring system
Songgan Weng, Duo Zhai, Xing Yang, et al.
Hydrological monitoring is recognized as one of the most important factors in hydrology. Particularly, investigation of the tempo-spatial variation patterns of water-level and their effect on hydrological research has attracted more and more attention in recent. Because of the limitations in both human costs and existing water-level monitoring devices, however, it is very hard for researchers to collect real-time water-level data from large-scale geographical areas. This paper designs and implements a real-time water-level data monitoring system (MCH) based on ZigBee networking, which explicitly serves as an effective and efficient scientific instrument for domain experts to facilitate the measurement of large-scale and real-time water-level data monitoring. We implement a proof-of-concept prototype of the MCH, which can monitor water-level automatically, real-timely and accurately with low cost and low power consumption. The preliminary laboratory results and analyses demonstrate the feasibility and the efficacy of the MCH.
An energy efficient and dynamic time synchronization protocol for wireless sensor networks
Anran Zhang, Fengshan Bai
Time synchronization is an important support technology of WSN(Wireless Sensor Network), and plays an irreplaceable role in the development of WSN. In view of the disadvantage of the traditional timing sync protocol for sensor networks (TPSN), we present a Physical Timing-sync Protocol (PTPSN) that aims at reducing the energy consumption of the synchronization process and realizes a dynamic Network. The algorithm broadcasts reference message to select some nodes in specific area. The receiver calculate offset of every selected node, and then calculate the average of offset to compensate for clock skew . At the same time ,we add time-filter process to ensure the security of the algorithm for time synchronization. The experiment results show that our algorithm is efficient in both saving energy consumption and dynamic network, and it can effectively resist attacks.
An inclusion measure between fuzzy sets
In this paper, we propose a new inclusion measure between fuzzy sets. Firstly, we select an axiomatic definition for the inclusion measure. Then, we present a new computation formula based on the selected axiomatic definition, and demonstrate its two properties. Finally, we give examples to validate its performance. The results show that the new inclusion measure is rational for fuzzy sets.
Analysis of friction effects on satellite antenna driving mechanism with clearance joints
Z. F. Bai, J. Chen, S. Bian, et al.
The existence of clearance in joints of mechanism is inevitable. In this paper, the friction effects in clearance joints on dynamic responses of driving mechanism of satellite antenna are studied. Considering clearances in joints, the contact force model in clearance joints is established using a nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the dual-axis driving mechanism of satellite antenna with clearance joints is used as the application example. The numerical simulation of dual-axis driving mechanism with clearance joints is presented. The friction effects of clearance joint on dynamic responses of the dual-axis driving mechanism are discussed and analyzed quantitatively for four cases with different friction coefficients. The investigation results show that the increase of friction coefficient will decrease the vibration amplitude of the driving mechanism system.
Application of RFID in the area of agricultural products quality traceability and tracking and the anti-collision algorithm
Zu-liang Wang, Ting Zhang, Shi-yang Xie
In order to improve the agricultural tracing efficiency and reduce tracking and monitoring cost, agricultural products quality tracking and tracing based on Radio-Frequency Identification(RFID) technology is studied, then tracing and tracking model is set up. Three-layer structure model is established to realize the high quality of agricultural products traceability and tracking. To solve the collision problems between multiple RFID tags and improve the identification efficiency a new reservation slot allocation mechanism is proposed. And then we analyze and optimize the parameter by numerical simulation method.
Conductivity-depth imaging of fixed-wing time-domain electromagnetic data with pitch based on two-component measurement
Conductivity-depth imaging (CDI) of data is generally applied in identifying conductive targets. CDI results will be affected by the bird attitude especially the pitch of the receiver coil due to the attitude, velocity of the aircraft and the wind speed. A CDI algorithm with consideration of pitch is developed based on two-component measurement. A table is established based on two-component B field response and the pitch is considered as a parameter in the table. Primary advantages of this method are immunity to pith errors and better resolution of conductive layers than results without consideration of pith. Not only the conductivity but also the pitch can be obtained from this algorithm. Tests on synthetic data demonstrate that the CDI results with pitch based on two-component measurement does a better job than the results without consideration of pitch and the pitch obtained is close to the true model in many circumstances.
Coupling loss reducing for fiber Raman gas detection technology
During the design of the photonic crystal fiber Raman gas detection device and taking the cost and practicability in to consideration, we choose to use a stainless steel tube as a connector for the connecting of the HCPCF and SMF to replace the fiber fusing splice. Basis on the measurement to reduce coupling loss, we calculated the optimum fiber gap for maximum light coupling and to reduce Fresnel loss. Using the stainless steel tube not only result in low loss but also benefit input of the sample gas and recycling of the fiber which is very expensive. By adjusting the central alignment of the stainless steel tube we can easily control the fiber deviation loss for specific type of SMF and HCPCF. The mode mismatch is also demonstrated.
Development and application of remote video monitoring system for combine harvester based on embedded Linux
Jin Chen, Yifan Wang, Xuelei Wang, et al.
Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.
Exploring network operations for data and information networks
Bing Yao, Jing Su, Fei Ma, et al.
Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.
Full-waveform associated identification method of ATEM 3D anomalies based on multiple linear regression analysis
Yanju Ji, Wanyu Huang, Mingmei Yu, et al.
This article studies full-waveform associated identification method of airborne time-domain electromagnetic method (ATEM) 3-d anomalies based on multiple linear regression analysis method. By using convolution algorithm, full-waveform theoretical responses are computed to derive sample library including switch-off-time period responses and off-time period responses. Extract full-waveform attributes from theoretical responses to derive linear regression equations which are used to identify the geological parameters. In order to improve the precision ulteriorly, we optimize the identification method by separating the sample library into different groups and identify the parameter respectively. Performance of full-waveform associated identification method with field data of wire-loop test experiments with ATEM system in Daedao of Changchun proves that the full-waveform associated identification method is feasible practically.
Mechanism design and dynamic analysis of a large-scale spatial deployable structure for space mission
Yanling Xu, Qiuhong Lin, Xingze Wang, et al.
The deployable structure is critical to the overall success of the space mission. This paper introduces a large-scale spatial deployable structure (SDS), which is developed to deploy and support the payload panels in a precise configuration once on the track. And segmental researching in the design, kinematics and dynamics analysis of SDS's prototyping system are presented. Geometric construction method and Bar-groups method are adopted to analysis the dimensions and coordinates of the SDS, which finally construct an well-determined mathematical model to raise the productivity and efficiency during optimization and analysis work. Be reasoned with the large-scale of the truss structures, flexible multibody dynamic simulations are developed, which present much more authentic stress transfer and kinematics behaviors. According to the deployment experiments of SDS's prototyping system, the correctness and validity of the flexible multibody simulation work are well proved.
Monopole quasi-Yagi antenna on polyimide substrate for flexible electronics
Jianying Liu, Fang Dai, Yichen Zhang, et al.
In this paper, a flexible monopole quasi-Yagi antenna printed on 50um thick polyimide substrate is designed for integration within modern flexible electronic devices. The antenna has a wide working band (5.22-6.6 GHz) that covers WLAN 5.8GHz (5.725-5.825GHz). Parameters changes of proposed modeling are analyzed to achieve desired impedance matching and resonant frequency. The reflection coefficient, gain and radiation efficiency are indicated to be still robust when the proposed antenna is under various bending directions. It is worth noting that radiation patterns have an effect when antenna is bent in the y-axis direction. The antenna prototype is fabricated and tested where the simulated results agree with measured ones.
Pornographic information of Internet views detection method based on the connected areas
Nowadays online porn video broadcasting and downloading is very popular. In view of the widespread phenomenon of Internet pornography, this paper proposed a new method of pornographic video detection based on connected areas. Firstly, decode the video into a serious of static images and detect skin color on the extracted key frames. If the area of skin color reaches a certain threshold, use the AdaBoost algorithm to detect the human face. Judge the connectivity of the human face and the large area of skin color to determine whether detect the sensitive area finally. The experimental results show that the method can effectively remove the non-pornographic videos contain human who wear less. This method can improve the efficiency and reduce the workload of detection.
Research and analysis of patch shape on microstrip patch antenna
The shape of the radiating patch in the microstrip patch antenna is one of the many factors that affect the performance of the microstrip antenna.In this paper, on the premise of center frequency of 2.45 GHz, rectangular, circular and triangular microstrip patch antennas are designed and simulated respectively.The simulation results of the three microstrip patch antenna are analyzed, such as feed point position, return loss and radiation patterns.The influence of the shape of the radiation patch on the impedance bandwidth, gain and directivity of microstrip antennas is discussed.The simulation results show that the comprehensive performance of rectangular microstrip patch antenna is better than the other two, the comprehensive performance of triangular microstrip patch antenna is poor.
Research on particle swarm optimization algorithm based on optimal movement probability
Jianhong Ma, Han Zhang, Baofeng He
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
Research on technology of ROF using in radar
Xiaowen Bi, Huiyong Zhang, Caibin Liu
The technology of Radio over Fiber (ROF) not only has broad prospects in the field of communications, but also has great potential in the field of radar. ROF technology will be able to change the traditional structure of radar and radar network, improve their performance. The radar can be reduced to a system that has only transmitter, receiver, transmission line and antenna. Other equipment can be concentrated to the command center. The command center will be not only a data processing center, but also a signal processing center. At first, this paper analyzed the factors that influence the phase stability of microwave signal in fiber. For a short fiber, the stress in the fiber direction is the major point that influence the phase stability, other factors can be neglected. For a long fiber, all factors should be considered. And then, this paper analyzed the technical requirements of radar signal transmission, concluded that the phase stability of ROF system is the most important factor for radar, and chosen the method of phase compensation to solve this problem. At last, this paper designed a ROF link for RF transmission of radar.
Research on testing software for rapid cloud deployment
Software testing is an important way to ensure the quality of software systems and services, but the ever-changing needs of software testing, in particular the size of the dynamic test requirements getting stronger. The traditional deployment way of testing software is complex and it is difficult to scale to meet the dynamic test requirements. With the rapid development of cloud computing technology, traditional testing software after modified can run in the cloud as well. This paper proposed building a cloud service platform based on cloud service provider, which combines several of cloud service to adapt to software testing. With this cloud service platform, software developer can run their testing software in the cloud quickly and test scale can stretch dynamically. Furthermore, it is possible to reduce the cost of testing because of the pay-for-use cloud computing.
Research on the head form design of service robots based on Kansei engineering and BP neural network
Yan Zhu, Gang Chen
It is always a difficult problem to demonstrate the users’ perceptual demand in the form design of home service robots. In this paper, the relationship between the design elements of the head form of home service robots and the perceptual evaluation of users is analyzed quantitatively by Kansei engineering and BP neural network. Finally, the aided design system of home service robots’ head form is constructed by using VB language with the trained BP network and 3D modeling software. Furthermore, it's considered that the results should be applied to the overall form design of home service robots and the impacts of different design constraints should also be incorporated as the input layer of BP network. Thus the more comprehensive aided design system of home service robots could be established.
Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes
Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.
The CFS-PML in numerical simulation of ATEM
Xuejiao Zhao, Yanju Ji, Shuo Qiu, et al.
In the simulation of airborne transient electromagnetic method (ATEM) in time-domain, the truncated boundary reflection can bring a big error to the results. The complex frequency shifted perfectly matched layer (CFS-PML) absorbing boundary condition has been proved to have a better absorption of low frequency incident wave and can reduce the late reflection greatly. In this paper, we apply the CFS-PML to three-dimensional numerical simulation of ATEM in time-domain to achieve a high precision .The expression of divergence equation in CFS-PML is confirmed and its explicit iteration format based on the finite difference method and the recursive convolution technique is deduced. Finally, we use the uniformity half space model and the anomalous model to test the validity of this method. Results show that the CFS-PML can reduce the average relative error to 2.87% and increase the accuracy of the anomaly recognition.
The improvement and simulation for LEACH clustering routing protocol
An energy-balanced unequal multi-hop clustering routing protocol LEACH-EUMC is proposed in this paper. The candidate cluster head nodes are elected firstly, then they compete to be formal cluster head nodes by adding energy and distance factors, finally the date are transferred to sink through multi-hop. The results of simulation show that the improved algorithm is better than LEACH in network lifetime, energy consumption and the amount of data transmission.
The performance evaluation model of mining project founded on the weight optimization entropy value method
Chao Mao, Shou Chen
According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.
The research and application of the power big data
Suxiang Zhang, Dong Zhang, Yaping Zhang, et al.
Facing the increasing environment crisis, how to improve energy efficiency is the important problem. Power big data is main support tool to realize demand side management and response. With the promotion of smart power consumption, distributed clean energy and electric vehicles etc get wide application; meanwhile, the continuous development of the Internet of things technology, more applications access the endings in the grid power link, which leads to that a large number of electric terminal equipment, new energy access smart grid, and it will produce massive heterogeneous and multi-state electricity data. These data produce the power grid enterprise's precious wealth, as the power big data. How to transform it into valuable knowledge and effective operation becomes an important problem, it needs to interoperate in the smart grid. In this paper, we had researched the various applications of power big data and integrate the cloud computing and big data technology, which include electricity consumption online monitoring, the short-term power load forecasting and the analysis of the energy efficiency. Based on Hadoop, HBase and Hive etc., we realize the ETL and OLAP functions; and we also adopt the parallel computing framework to achieve the power load forecasting algorithms and propose a parallel locally weighted linear regression model; we study on energy efficiency rating model to comprehensive evaluate the level of energy consumption of electricity users, which allows users to understand their real-time energy consumption situation, adjust their electricity behavior to reduce energy consumption, it provides decision-making basis for the user. With an intelligent industrial park as example, this paper complete electricity management. Therefore, in the future, power big data will provide decision-making support tools for energy conservation and emissions reduction.
Evaluating the green practice of food service supply chain management based on fuzzy DEMATEL-ANP model
Xiaoying Li, Qinghua Zhu
The question on how to evaluate a company’s green practice has recently become a key strategic consideration for the food service supply chain management. This paper proposed a novel hybrid model that combines a fuzzy Decision Making Trial And Evaluation Laboratory(DEMATEL) and Analysis Network Process(ANP) methods, which developed the green restaurant criteria and demonstrated the complicated relations among various criteria to help the food service operation to better analyze the real-world situation and determine the different weight value of the criteria .The analysis of the evaluation of green practices will help the food service operation to be clear about the key measures of green practice to improve supply chain management.
The research of the precoding matrices of interference alignment
Yuelin Du, Jiang Xue
In recent years, with the rapid development of wireless communication industry, how to manage the interference become a central problem in modern communication system. Actually, this problem mostly comes from the less and less spectrum resource and increasing demand for high data rates. Although many interference management techniques have been proposed, because the interference can exist in any part of wireless communication, some basic problems of network interference are not able to be solved until the emergence of interference alignment technology.

Interference alignment, in theory, can enable a performance that all the interference signals fall into the subspace of interference and all the useful signal also fall into the corresponding subspace. In this paper, we focus on the problem of signal transmitted over an interference channel, along the lines of the recently proposed methods of interference alignment. From the basic principle of interference alignment, we can see each receiver maintains its corresponding subspace, the transmitters mold their transmissions regularly in order to make all the interference signal received by a particular receiver and then falls into its interference subspace. The remaining part of the receiver space can be used to get the useful signal. For the general interference channel, compared with the previous method, this kind of technique not only minimizes the interference power that is overflowed out the interference subspace, but also minimizes the power of useful signal that is fell into the interference subspace.
Finite time control of uncertain networked switched linear systems with quantizations
Xiaoling Chen, Guopeng Zhou, Fengxia Tian, et al.
This paper is concerned with the finite-time control problem for uncertain networked switched linear systems with both state and control input quantizations. By employing average well dwell time (ADT) and Lyapunov-like function method, a feedback controller is designed to guarantee that the dynamic augment closed-loop system is finite-time boundedness. Then based on this, some sufficient conditions which ensure the finite-time boundedness of networked switched systems are derived in terms of linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed design approach.
Design of a compact low-power human-computer interaction equipment for hand motion
Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment’s energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment’s function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.
A cooperative MAC protocol with error-aware relay selection for wireless ad hoc networks
Shanzhi Liu, Kai Liu, Rui Wang, et al.
To solve performance degradation caused by channel fading, we propose a cooperative MAC protocol with error-aware relay selection for wireless ad hoc networks in this paper. In the protocol, the transmission error of data packet caused by channel fading are considered in order to achieve the best cooperative gain in the poor quality channel. In the relay selection process, potential relay nodes satisfying corresponding requirement can compete to sever as final relay node by means of priority selection and collision resolution process. Finally, simulation results show that the proposed protocol outperforms other protocol in terms of packet error rate and the saturation throughput.
A method of designing smartphone interface based on the extended user's mental model
Wei Zhao, Fengmin Li, Jiali Bian, et al.
The user’s mental model is the core guiding theory of product design, especially practical products. The essence of practical product is a tool which is used by users to meet their needs. Then, the most important feature of a tool is usability. The design method based on the user's mental model provides a series of practical and feasible theoretical guidance for improving the usability of the product according to the user’s awareness of things. In this paper, we propose a method of designing smartphone interface based on the extended user’s mental model according to further research on user groups. This approach achieves personalized customization of smartphone application interface and enhance application using efficiency.
A new stereo matching method based on threshold constrained minimum spanning tree
Hai Cao, Yan Ding, Ming Du, et al.
This paper proposes a novelty dense stereo matching method based on TC-MST (Threshold Constrained Minimum Spanning Tree), which aims to improve the accuracy of distance measuring. Due to the threshold has a great impact on the results of image segments, to select a better threshold, we adopt iteration threshold method. And then we uses MST to calculate the cost aggregation, and utilize the winner-take-all algorithm for the cost aggregation to obtain the disparity. Finally the method proposed is used in a distance measuring system. The experiment results show that this method improves the distance measuring accuracy compared with BM (block matching).
The designing and implementation of PE teaching information resource database based on broadband network
In order to change traditional PE teaching mode and realize the interconnection, interworking and sharing of PE teaching resources, a distance PE teaching platform based on broadband network is designed and PE teaching information resource database is set up. The designing of PE teaching information resource database takes Windows NT 4/2000Server as operating system platform, Microsoft SQL Server 7.0 as RDBMS, and takes NAS technology for data storage and flow technology for video service. The analysis of system designing and implementation shows that the dynamic PE teaching information resource sharing platform based on Web Service can realize loose coupling collaboration, realize dynamic integration and active integration and has good integration, openness and encapsulation. The distance PE teaching platform based on Web Service and the design scheme of PE teaching information resource database can effectively solve and realize the interconnection, interworking and sharing of PE teaching resources and adapt to the informatization development demands of PE teaching.
Multiple concurrent sources localization based on a two-node distributed acoustic sensor network
Jiaxin Xu, Zhao Zhao, Chunzeng Chen, et al.
In this work, we propose a new approach to localize multiple concurrent sources using a distributed acoustic sensor network. Only two node-arrays are required in this sensor network, and each node-array consists of only two widely spaced sensors. Firstly, direction-of-arrivals (DOAs) of multiple sources are estimated at each node-array by utilizing a new pooled angular spectrum proposed in this paper, which can implement the spatial aliasing suppression effectively. Based on minimum variance distortionless response (MVDR) beamforming and the DOA estimates of the sources, the time-frequency spectra containing the corresponding energy distribution features associated with those sources are reconstructed in each node-array. Then, scale invariant feature transform (SIFT) is employed to solve the DOA association problem. Performance evaluation is conducted with field recordings and experimental results prove the effectivity and feasibility of the proposed method.
Channel coding for underwater acoustic single-carrier CDMA communication system
Lanjun Liu, Yonglei Zhang, Pengcheng Zhang, et al.
CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.
Object localization based on smoothing preprocessing and cascade classifier
Xingfu Zhang, Lei Liu, Feng Zhao
An improved algorithm for image location is proposed in this paper. Firstly, the image is smoothed and the partial noise is removed. Then use the cascade classifier to train a template. Finally, the template is used to detect the related images. The advantage of the algorithm is that it is robust to noise and the proportion of the image is not sensitive to change. At the same time, the algorithm also has the advantages of fast computation speed. In this paper, a real truck bottom picture is chosen as the experimental object. Images of normal components and faulty components are all included in the image sample. Experimental results show that the accuracy rate of the image is more than 90 percent when the grade is more than 40. So we can draw a conclusion that the algorithm proposed in this paper can be applied to the actual image localization project.
Electronics Technology
icon_mobile_dropdown
A method of measuring the velocity of slit based on machine vision
In the lithography machine, there is a field diaphragm, which is a kind of edge structure. In the process of exposure, it is linearly synchronous movement with the die, so when developing the slit, it is necessary to measure its movement characteristics precisely. A method of velocity measurement based on machine vision is adopted, by detecting edge position in sequential images, and then through the transformation between image coordinate and world coordinate, the object displacement in real space is calculated and finally instantaneous velocity of the object is got. Firstly, through the simulation model in CODE V, correctness of the measurement principle is verified, Next, some error sources that affect the precision of the machine vision measurement system are analyzed, and corresponding solutions are given.
A novel stiffness control method for series elastic actuator
Guangmo Lin, Xingang Zhao, Jianda Han
Compliance plays an important role in human-robot cooperation. However, fixed compliance, or fixed stiffness, is difficult to meet the growing needs of human machine collaboration. As a result, the robot actuator is demanded to be able to adjust its stiffness. This paper presents a stiffness control scheme for a single DOF series elastic actuator (SEA) with a linear spring mounted in series in the mechanism. In this proposed method, the output angle of the spring is measured and used to calculate the input angle of the spring, thus the equivalent stiffness of the robot actuator revealed to the human operator can be rendered in accordance to the desired stiffness. Since the techniques used in this method only involve the position information of the system, there is no need to install an expensive force/torque sensor on the actuator. Further, the force/torque produced by the actuator can be estimated by simply multiplying the deformation angle of the spring and its constant stiffness coefficient. The analysis of the stiffness controller is provided. Then a simulation that emulates a human operates the SEA while the stiffness controller is running is carried out and the results also validate the proposed method.
A study on kinetics of Al2O3 inclusion absorbed by mold slag used for non-manganese steel
Zhiyang Li, Weican Zhou, Mindong Chen
Dissolution kinetics of alumina into a new type CaO-Al2O3 mold slag was investigated by employing the rotating cylinder method. The results shows that the alumina dissolution was controlled by the mass transfer in the molten slag; the diffusion coefficient D=4.2×10-5mm2/s under 1400°C; the activation energy of dissolution process was 213.8 Kj/mo1, this energy was higher than that of traditional mold slag; the ability of the new mold slag to absorb Al2O3 was weaker than that of traditional mold slag.
Analysis and control on changeable wheel tool system of hybrid grinding and polishing machine tool for blade finishing
Qiuwei He, Xingming Lv, Xin Wang, et al.
Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.
Analysis and discussion on anti-thunder scheme of wind power generation system
Anti-thunder scheme of wind power generation system is discussed in this paper. Through the research and analysis on the harm of the thunder, division of lightning protection zone and lightning protection measures are put forward, which has a certain practical significance on the design and application of wind power generation system.
Analysis of energy-saving dispatch based on energy efficiency for power system with large scale wind power integration
Lanqing Zou, Peng Zhou, Shitong Li, et al.
With the increasing of wind generators and the scale of wind farm, the utilization rate of wind power decreases continually, it is essential to develop an energy-saving dispatching model for the purpose of energy conservation and emission reduction. Firstly, considering some main factors, such as generator operating costs, start-up unit costs, shutdown unit costs, oil consumption and pollutant emission, establish an energy efficiency model. Then, based on the principle of energy-saving dispatch, a model is established which objective is maximizing the energy efficiency. Moreover, in order to realize the priority dispatching of wind power, another model is established which objective is minimizing the wind power shedding. Finally, under the conditions of different installed wind power capacities being integrated into a real region grid, two models are compared and analyzed from perspectives of the society, thermal power enterprise and wind power enterprise.
Block Hadamard measurement matrix with arbitrary dimension in compressed sensing
As Hadamard measurement matrix cannot be used for compressing signals with dimension of a non-integral power-of-2, this paper proposes a construction method of block Hadamard measurement matrix with arbitrary dimension. According to the dimension N of signals to be measured, firstly, construct a set of Hadamard sub matrixes with different dimensions and make the sum of these dimensions equals to N. Then, arrange the Hadamard sub matrixes in a certain order to form a block diagonal matrix. Finally, take the former M rows of the block diagonal matrix as the measurement matrix. The proposed measurement matrix which retains the orthogonality of Hadamard matrix and sparsity of block diagonal matrix has highly sparse structure, simple hardware implements and general applicability. Simulation results show that the performance of our measurement matrix is better than Gaussian matrix, Logistic chaotic matrix, and Toeplitz matrix.
Calculation method for line loss in 10kV distribution grid planning
Ming-hui Xiao, Ling-xue Lin, Si-yuan Liu
Distribution grid line loss index is an important indicator of running and managing a distribution grid. A general feature in distribution network is its difficulty in gathering data about structure and operation. Based on its feature, this paper proposed a method for calculating line loss in 10kV distribution grid from the perspective of planning. According to the characteristics of power consumption on different location of the feeder, line loss can be divided into three parts, including the main line loss, the loss of branch line and the loss of distribution transformer. The proposed method achieved quick calculation and component analysis. Distributed coefficient was calculated by analyzing different distributed situation of load on feeder and the equivalent loss power on main line was calculated. Branch line and distribution transformer were equivalent to a resistance located at the head of the line to match the real power consumption. With the data acquirement, accuracy can be improved. Finally, the example of different power supply zone was calculated based on the method. The comparison between the calculated results and technical guidelines of southern power grid indicated the components of the line loss and put forward solutions for loss reduction. The method proposed overcame disadvantage of strong dependence on complete and precise data, which fits for planning work.
Design and control of a high precision drive mechanism
Bo Pan, Yongqiang He, Haowei Wang, et al.
This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.
Design and optimization of LCL-VSC grid-tied converter having short circuit fault current limiting ability
Mengqi Liu, Haijun Liu, Zhikai Wang
Traditional LCL grid-tied converters haven’t the ability to limit the short-circuit fault current and only remove grid-connected converter using the breaker. However, the VSC converters become uncontrollable after the short circuit fault cutting off and the power switches may be damaged if the circuit breaker removes slowly. Compared to the filter function of the LCL passive components in traditional VSC converters, the novel LCL-VSC converter has the ability of limiting the short circuit fault current using the reasonable designed LCL parameters. In this paper the mathematical model of the LCL converter is established and the characteristics of the short circuit fault current generated by the ac side and dc side are analyzed. Thus one design and optimization scheme of the reasonable LCL passive parameter is proposed for the LCL-VSC converter having short circuit fault current limiting ability. In addition to ensuring the LCL passive components filtering the high-frequency harmonic, this scheme also considers the impedance characteristics to limit the fault current of AC and DC short circuit fault respectively flowing through the power switch no more than the maximum allowable operating current, in order to make the LCL converter working continuously. Finally, the 200kW simulation system is set up to prove the validity and feasibility of the theoretical analysis using the proposed design and optimization scheme.
Development of 6-DOF painting robot control system
Junbiao Huang, Jianqun Liu, Weiqiang Gao
With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.
Effect of grinding parameter on surface quality of ceramic bearing inner raceway
Songhua Li, Wenbo Mi, Ke Zhang, et al.
Grinding parameters are of great concern in the success of processing good quality ceramic bearing outer rings. Practical grinding of ceramics demands appropriate parameters in respect of acceptable ceramic surfaces. In this work, a CNC grinder, MK2710, equipped with diamond grinding wheels, was used to grind ZrO2 and Si3N4 bearing outer rings with changing processing parameters. In order to promote the grinding quality, a series of tests were conducted to optimize the processing parameters in each process. The results showed that the outer ring surface quality has been improved and roughness (Ra) of the outer ring raceway decreased to 0.03 μm and the roundness tolerance diminished. Experiments indicated that proper grinding parameters are necessities for efficiency-processing of ceramic bearing outer rings and also help to promote grinding qualities of ceramic materials.
Evaluating core technology capacity based on an improved catastrophe progression method: the case of automotive industry
Shijia Zhao, Zongwei Liu, Yue Wang, et al.
Subjectivity usually causes large fluctuations in evaluation results. Many scholars attempt to establish new mathematical methods to make evaluation results consistent with actual objective situations. An improved catastrophe progression method (ICPM) is constructed to overcome the defects of the original method. The improved method combines the merits of the principal component analysis’ information coherence and the catastrophe progression method’s none index weight and has the advantage of highly objective comprehensive evaluation. Through the systematic analysis of the influencing factors of the automotive industry’s core technology capacity, the comprehensive evaluation model is established according to the different roles that different indices play in evaluating the overall goal with a hierarchical structure. Moreover, ICPM is developed for evaluating the automotive industry’s core technology capacity for the typical seven countries in the world, which demonstrates the effectiveness of the method.
Evaluation of the sensing block method for dynamic force measurement
Qinghui Zhang, Hao Chen, Wenzhao Li, et al.
Sensing block method was proposed for the dynamic force measurement by Tanimura et al. in 1994. Comparing with the Split Hopkinson pressure bar (SHPB) technique, it can provide a much longer measuring time for the dynamic properties test of materials. However, the signals recorded by sensing block are always accompanied with additional oscillations. Tanimura et al. discussed the effect of force rising edge on the test results, whereas more research is still needed. In this paper, some more dominant factors have been extracted through dimensional analysis. The finite element simulation has been performed to assess these factors. Base on the analysis and simulation, some valuable results are obtained and some criterions proposed in this paper can be applied in design or selection of the sensing block.
J-integral for interface crack on micro-arc oxidation ceramic coating
Cheng Gao, Huiyu Tao, Dayong Cai, et al.
By use of extended finite element analysis method, a calculation of J-integral for interface crack on Micro-arc Oxidation(MAO) ceramic coating on aluminum alloy was conducted. The feasibility of using J-integral as a fracture parameter to characterize the interfacial fracture toughness is discussed. The relation between J-integral and length of interface crack, thickness of ceramic coating is studied. Analysis result indicates that with the expansion of the interface crack length, resistance bi-material interface enhancements, and interfacial fracture toughness enhances, the J-integral increases with the increase of crack length. When the thickness of the ceramic coating is upon 40μm-100μm, interfacial fracture toughness is better. J-integral value shows a decreasing trend with the increase of the thickness of the ceramic coating.
Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor
Peng Xiao, Yiqing Luan, Haipeng Wang, et al.
In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.
Optimal line drop compensation parameters under multi-operating conditions
Yuan Wan, Hang Li, Kai Wang, et al.
Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.
Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control
The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.
Research and simulation on the rollover system of corn harvester
Shizhuang Li, Shukun Cao
The structural characteristics of our country's corn harvester are narrow-track, high centroid and existence of eccentric distance, so rollover accident is easily to occur when driving in mountainous and hilly regions. In order to improve the design quality of corn harvester and enhance the security of operation, it is of great significance to research the rollover prevention system of the corn harvester. Hydro-pneumatic suspension has powerful function of adjusting the balance of automobile body and good shock absorption function. In this paper, hydro-pneumatic suspension is applied to the rollover prevention system of the corn harvester to improve the ability of anti-rollover. At last using ADAMS simulation technology to simulate the roll stability of traditional corn harvester and the corn harvester with hydro pneumatic suspension, then calculating the heeling angle in both cases.
Research on characteristics of radiated noise of large cargo ship in shallow water
Yongdong Liu, Liang Zhang
With the rapid development of the shipping industry, the number of the world’s ship is gradually increasing. The characteristics of the radiated noise of the ship are also of concern. Since the noise source characteristics of multichannel interference, the surface wave and the sea temperature microstructure and other reasons, the sound signal received in the time-frequency domain has varying characteristics. The signal of the radiated noise of the large cargo ship JOCHOH from horizontal hydrophone array in some shallow water of China is processed and analyzed in the summer of 2015, and the results show that a large cargo ship JOCHOH has a number of noise sources in the direction of the ship’s bow and stern lines, such as host, auxiliary and propellers. The radiating sound waves generated by these sources do not meet the spherical wave law at lower frequency in the ocean, and its radiated noise has inherent spatial distribution, the variation characteristics of the radiated noise the large cargo ship in time and frequency domain are given. The research method and results are of particular importance.
Research on grid connection control technology of double fed wind generator
The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.
Research on large-scale wind farm modeling
Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.
Research on unit commitment with large-scale wind power connected power system
Ran Jiao, Baoqun Zhang, Zhongjun Chi, et al.
Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.
Robust control for snake maneuver design of missile
Ya Kun, Xin Chen, Chuntao Li
For the performance of missile with high Mach number and strongly nonlinear dynamics, this paper uses robust control to design maneuver controller. Robust servomechanism linear quadratic regulator (RSLQR) control is used to form the inner loop and proportional-plus-integral (PI) control is used to provide yawing tracking with no error. Contrast simulations under three types of deviation have been done to confirm robustness of the RSLQR-plus-PI control. Simulation results shows that RSLQR-plus-PI control would resist the disturbance and maintain the properties of the controller, guarantee the robustness and stability of missile more effectively than pure PI control.
Study on fault diagnosis and load feedback control system of combine harvester
In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.
Study on test and preparation of load spectrum of hydraulic excavator
Hong Zhang, Guodi Feng, Haijun Zhang, et al.
Due to harsh working conditions, the components of hydraulic excavator are subject to large amount of alternating load and random load during the operation and they are seriously damaged. The test of load signal and preparation of load spectrum for the hydraulic excavator are studied in this paper. In the first place, pretreatment of filtering and noise reduction for load signal is conducted based on experimental test on site and experimental working condition analysis. After the load signal is processed in sections, distribution fitting is performed for information like mean amplitude after rain flow counting with the approach of probability statistics to get the probability distribution function for mean value and amplitude value. Finally the two dimensional load spectrum for mean amplitude is obtained and program spectrum loading solution of fatigue experiment is given. The study of load signal test and load spectrum preparation method for hydraulic excavator conducted in this paper is of great significance for clarification of load distribution of excavator and further reliability test of excavator.
Study on the new structure and its influencing factors of miniature circuit breaker for short circuit protection
Gong He, Zong Ming
Miniature Circuit Breaker (MCB) is widely used in terminal power distributions and civil buildings, its annual production has more than 500 million poles. However, in terms of the short circuit protection of MCB, and there's no short circuit delay function, so it can not reach the full selective protection, even through the cooperation between the time selection and the current selection. In paper, a new structure of MCB’s electromagnetic tripping device is proposed, which is able to realize short-circuit delay protection. The new is on the traditional structure added a secondary winding, then controlling the on or off of the secondary winding, using its demagnetization effect to realize the short time delay function when the secondary winding is closed. This is a new idea in the field of low-voltage circuit breakers. In addition, take the U type electromagnet as an example, through the analysis of the magnetic circuit, the main factors that affect the magnetic effect of the secondary winding are studied by using MATLAB.
The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control
Jin-gen Sun, Yi Chen, Jia-nan Zhang
Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.
The research on aging failure rate and optimization estimation of protective relay under haze conditions
In the fog and haze, the air contains large amounts of H2S, SO2, SO3 and other acids, air conductivity is greatly improved, the relative humidity is also greatly increased, Power transmission lines and electrical equipment in such an environment will increase in the long-running failure ratedecrease the sensitivity of the detection equipment, impact protection device reliability. Weibull distribution is widely used in component failure distribution fitting. It proposes a protection device aging failure rate estimation method based on the least squares method and the iterative method,.Combined with a regional power grid statistics, computing protective equipment failure rate function. Binding characteristics of electrical equipment operation status under haze conditions, optimization methods, get more in line with aging protection equipment failure under conditions of haze characteristics.
The research on tool wear of high speed milling titanium alloy TC4
Hongliang Shi, Zhichao Wang, Huanhuan Ren, et al.
In this paper, carbide cutting tools with physical vapor deposition (PVD) coating was used to high speed milling α+β phase TC4 titanium alloy. The PVD tool was used to study the process of milling TC4 titanium alloy tool wear patterns and wear mechanisms. The results showed that the PVD coating surface wear was small after cutter blade. The cutting life was long, it was suitable for processing of titanium alloy TC4, the wear of rake face was mainly adhesion wear and oxidation wear, the flank face was mainly boundary wear. That was because the adhesion wear of the rake face and the boundary wear of the flank face had a weakening effect on the cutting edge , which made the micro crack blade of the main cutting edge.
The research on flow pulsation characteristics of axial piston pump
Bingchao Wang, Yulin Wang
The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.
Vibration evaluation and parameter optimization of hydraulic thruster
Yong Peng, Haokun Zhang
Two difficult problems which are drilling string vibration and drilling pressure control exist in the process of drilling large displacement horizontal well. Using hydraulic thruster can not only improve the mechanical drilling speed and increase the horizontal section of footage displacement but also obtain better drill string dynamic characteristics and reduce vibration of drilling tool and prolong the life of the bottom hole assembly. By using the spring-damping model of drill string, the dynamic response of the different excitation of the drill bit is analyzed, so as to evaluate the effect of vibration reduction of hydraulic thruster. Use the three factors four levels orthogonal test method to optimize the key design parameters of hydraulic thruster. The analysis shows that the different drilling mud density should be used in the hydraulic thruster with different key parameters, in order to display its superiority.
Short-term load forecasting study of wind power based on Elman neural network
Xinran Tian, Jing Yu, Teng Long, et al.
Since wind power has intermittent, irregular and volatility nature, improving load forecasting accuracy of wind power has significant influence on controlling wind system and guarantees stable operation of power grids. This paper constructed the wind farm loading forecasting in short-term based on Elman neural network, and made a numerical example analysis. . Examples show that, using input delayed of feedback Elman neural network, can reflect the inherent laws of wind load operation better, so as to present a new idea for short-term load forecasting of wind power.
Research on comprehensive power quality compensation schemes based on series and shunt converters
Dongqiang Jia, Rongkai He, Yeniu Qian
To solve power quality problems such as voltage sag and low power factor which may occur simultaneously. This paper has taken research on two comprehensive power quality compensation schemes based on series and shunt converters, including corresponding topology structure and operation principle, meanwhile, the equivalent circuit and power flow analysis are also given. Then the paper has discussed relative characteristics of schemes, such as flexibility, reliability and applications. Finally, simulation results have verified effectiveness of related analysis of schemes.
Compound control strategy used in Electro-Mechanical Actuator (EMA)
Yongling Fu, Meng Yan
This article briefly describes the overall structure of the loading test rig; establish mathematical model of loading EMA, analyze its stability, surplus force and other properties in MATLAB; propose a compound control strategy combined speed feedback, PID and feed-forward compensation based on structure invariance principle. To verify the effectiveness of the control strategy, do a co-simulation by designing a controller based on the control strategy above in MATLAB and building the EMA model in AMESim. The results show that the compound control strategy can significantly improve dynamic tracking accuracy and reduce surplus force.
Decentralized adaptive fuzzy output feedback control of nonlinear interconnected systems with time-varying delay
Qin Wang, Zuwen Chen, Aiguo Song
A robust adaptive output-feedback control scheme based on K-filters is proposed for a class of nonlinear interconnected time-varying delay systems with immeasurable states. It is difficult to design the controller due to the existence of the immeasurable states and the time-delay couplings among interconnected subsystems. This difficulty is overcome by use of the fuzzy system, the K-filters and the appropriate Lyapunov-Krasovskii functional. Based on Lyapunov theory, the closed-loop control system is proved to be semi-global uniformly ultimately bounded (SGUUB), and the output tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the approach.
Design of the exhaust device for light vehicle engine pedestal experiment
In view of the shortcomings and the insufficiency of the existing exhaust device for light vehicle engine pedestal experiment, improvement scheme is proposed to design a suitable multi-type exhaust device for light vehicle engine pedestal experiment, which has flex space and a certain degree of freedom in six directions x, y, z, x, y, z, so the problem of interference during the process of installation can be solved, the cost on research and development and test can be reduced and the development cycle can be shorten and it can also be multi-usage.
Super short term forecasting of photovoltaic power generation output in micro grid
Cheng Gong, Longfei Ma, Zhongjun Chi, et al.
The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.
Electric power emergency management mechanism considering the access of new energy and renewable energy
Scholars at home and abroad have had a thorough research about the theory system and the frame of emergency management on the background of traditional grid, but for the improvement of the emergency mechanism when new energy and renewable energy access the grid, more work should be done. This paper will summarize the predecessors' work on emergency management, discuss the impact of emergency management while new energy and renewable energy access the grid and some suggestions are given.
The study of mechanism synthesis and optimization for the mechanism of fire-monitor with straight flow channel
Ping'an Liu, Xiaoliang Wang
Design of a new fire-monitor through the substitution of the traditional bend flow channel with a straight tube is presented in this paper, in order to deduce the pressure drop when hydraulic fluid goes through the channel, and the serial-parallel structure with a four-bar linkage plus a revolute pair is used so as to realize two rotating degrees of freedom. The type synthesis of mechanism, the dimensional optimization of the four-bar linkage, as well as the design of the oscillating mechanism is delivered in sequence, and the model has also been developed, finally. All the work has achieved the expected results, which has guidance to the redevelopment of fire-monitor with high efficiency and lower energy assumption.
Study on perception and control layer of mine CPS with mixed logic dynamic approach
Jingzhao Li, Ping Ren, Dayu Yang
Mine inclined roadway transportation system of mine cyber physical system is a hybrid system consisting of a continuous-time system and a discrete-time system, which can be divided into inclined roadway signal subsystem, error-proofing channel subsystems, anti-car subsystems, and frequency control subsystems. First, to ensure stable operation, improve efficiency and production safety, this hybrid system model with n inputs and m outputs is constructed and analyzed in detail, then its steady schedule state to be solved. Second, on the basis of the formal modeling for real-time systems, we use hybrid toolbox for system security verification. Third, the practical application of mine cyber physical system shows that the method for real-time simulation of mine cyber physical system is effective.
Description of the M-integral in an elastic plastic material
Huiyu Tao, Cheng Gao, Jinyong Xu, et al.
By use of finite element analysis method of elastic-plasticity, a calculation of M-integral for 7075 aluminum alloy plate containing different configuration defects was conducted. The effect of plastic energy on path independence of the M-integral is discussed, The variation of M-integral of the holes before and after coalescence under tension loading is studied. Analysis result indicates that M-integral will be path dependent when the plastic zone is passed through by the selected integration contours. There is a jump of the M-integral when coalescence of the holes in a plate occurs. The value of the M-integral is always configuration dependent.
Development of an automatic measuring device for total sugar content in chlortetracycline fermenter based on STM32
Ruochen Liu, Xiangguang Chen, Minpu Yao, et al.
Because fermented liquid in chlortetracycline fermenter has high viscosity and complex composition, conventional instruments can't directly measure its total sugar content of fermented liquid. At present, offline artificial sampling measurement is usually the way to measuring total sugar content in chlortetracycline Fermenter. it will take too much time and manpower to finish the measurement., and the results will bring the lag of control process. To realize automatic measurement of total sugar content in chlortetracycline fermenter, we developed an automatic measuring device for total sugar content based on STM32 microcomputer. It can not only realize the function of automatic sampling, filtering, measuring of fermented liquid and automatic washing of the device, but also can make the measuring results display in the field and finish data communication. The experiment results show that the automatic measuring device of total sugar content in chlortetracycline fermenter can meet the demand of practical application.
Research on transient hysteresis current control strategy of DC-DC converter
Ting Zhang, Zu-liang Wang, Yu-kai Zhao
In order to improve the dynamic performance of DC-DC converter, transient hysteresis current control strategy is proposed which is based on parallel computing and combinational logic. By making a comparison between the real-time inductor current and the threshold inductor current, the switch is controlled more accurately. Under the Matlab/Simulink environment, the process of the Buck-Boost converter was simulated. The simulation results show that the transient hysteresis current control strategy can effectively overcome the disadvantages when load changes or input voltage disturbance occurs, it posses high load regulation and short dynamic response time, and it verifies the feasibility of the proposed strategy.
A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system
Zhuo Ge, Ying Zhu, Guanhao Liang
To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.
Analysis and control of the vibration of doubly fed wind turbine
Manye Yu, Ying Lin
The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.
Dynamic characteristics and mechatronics model for maglev blood pump
Kun Sun M.D., Chen Chen
Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.
Analysis of impact of suspension rubber mounts on ride comfort
Bao Chen, Zheming Chen, Gang Lei
Two multi-body car models with rubber mounts and without rubber mounts have been built up to research how the suspension rubber mounts impact ride comfort. The comfort mount was used to simulate the impact process. Two scenarios have been set up, and time integrations have been performed to get the acceleration-time histories of seat surface in the x-, y-, and z-direction. A MATLAB program was compiled to calculate the weighted RMS acceleration. For the first scenario, the relative difference of weighted RMS acceleration between the car models with rubber mounts and without rubber mounts gradually decreases as the road roughness increases. For the second scenario, the relative difference increases as the driving speed increases. The conclusion shows that the change of driving speed or road roughness impacts ride comfort. Especially for high driving speed this impact is quite obvious.
The design of mobile robot control system for the aged and the disabled
Wang Qiang, Shi Lei, Gao Xiang, et al.
This paper designs a control system of mobile robot for the aged and the disabled, which consists of two main parts: human-computer interaction and drive control module. The data of the two parts is transferred via universal asynchronous receiver/transmitter. In the former part, the speed and direction information of the mobile robot is obtained by hall joystick. In the latter part, the electronic differential algorithm is developed to implement the robot mobile function by driving two-wheel motors. In order to improve the comfort of the robot when speed or direction is changed, the least squares algorithm is used to optimize the speed characteristic curves of the two motors. Experimental results have verified the effectiveness of the designed system.
An assembly system based on industrial robot with binocular stereo vision
Hong Tang, Nanfeng Xiao
This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.
Design of a lock-amplifier circuit
H. Liu, W. J. Huang, X. Song, et al.
The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V ~ 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.
Analysis on strength and stiffness of double-deck plates filter system of mechanical water treatment plant
De-zhen Feng, Qi-qi Yu
Domestic water treatment is a very important technology field. Now, mechanical water treatment technology is getting wide use in production. In the process of life water treatment, filter process is a very important step. In this paper, the strength and deformation of double-deck plates filter system which includes upper filter plate, lower filter plate and reinforced ribs were analyzed with ANSYS and useful results were got. Through the analysis on strength and deformation, the paper found the advantages and disadvantages of production and design of filter systems. After analyzing and comparing the stresses and deformations of several different design schemes, the paper provided the optimized design plan of filter system which can satisfy the strength need and decrease the creep deformation of plastic filter plates.
Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources
Pei Bie, Buhan Zhang, Hang Li, et al.
Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.
Study on mild and severe wear of 7075 aluminum alloys by high-speed wire electrical discharge machining
Jinkai Xu, Rongxian Qiu, Kui Xia, et al.
The recast and the carbon layers were fabricated on 7075Al alloys surface by the high-speed wire electrical discharge machining (HS-WEDM) technologyunder various working parameters. The mechanical properties and friction behaviors of the layers were investigated by UMT. 7075 Al alloys were used to do dry sliding wear tests on a pin-ondisk wear tester at room temperature under various contact pressures. 7075 Al alloys had almost the same wear regularity as a function of sliding velocity and rated frequency. The hardness of recast layer was improved. And this method can enhance durability of 7075 Al alloy effectively.The transition to severe wear occurred at a higher load (12N) for asmachined samples, compared with 7075 matrix (9N), the as-machined samples exhibited lower wear rates within the tested loading range.
Blockage fault diagnosis method of combine harvester based on BPNN and DS evidence theory
Jin Chen, Kai Xu, Yifan Wang, et al.
According to the complexity and the lack of intelligent analysis method of combine harvester blockage fault , this paper puts forward a method , based on the combination of BP neural network (BPNN)and DS evidence theory , for combine harvester blockage fault diagnosis. Choosing cutting table auger, conveyer trough, threshing cylinder and grain conveying auger as the study, this paper divides the condition of combine harvester into four categories, namely, normal, slightly blocking, blockage, severe blockage, which being as an identification framework for DS evidence theory. BP neural network is used for analysing speed information of monitoring points and distributing basic probability for each proposition in the identification framework. Dempster combination rule converged information at different time to obtain diagnostic results.Test results show that this method can timely and accurately judge the work state of combine harvester, the blocking fault warning time will be increased to 2 seconds and the success probability of blocking fault warning reach more than 90%.
Artificial Intelligence and Algorithms
icon_mobile_dropdown
A novel prediction method for back pressure based on fuzzy inference theory
Guanghua Chen, Kunting Zhang, Hongyuan Qi, et al.
In order to solve the problem of back pressure set unreasonable in direct air-cooling unit, a back-pressure-fuzzy-inference machine is established in this paper, of which the environmental temperature and wind speed are the inputs, and the optimal back pressure is the output. The feasibility of the novel method is verified by simulation and experimental results, and the accuracy of back pressure fuzzy prediction can satisfy the operating requirements.
A result-driven minimum blocking method for PageRank parallel computing
Wan Tao, Tao Liu, Wei Yu, et al.
Matrix blocking is a common method for improving computational efficiency of PageRank, but the blocking rules are hard to be determined, and the following calculation is complicated. In tackling these problems, we propose a minimum blocking method driven by result needs to accomplish a parallel implementation of PageRank algorithm. The minimum blocking just stores the element which is necessary for the result matrix. In return, the following calculation becomes simple and the consumption of the I/O transmission is cut down. We do experiments on several matrixes of different data size and different sparsity degree. The results show that the proposed method has better computational efficiency than traditional blocking methods.
Analysis of rotational motion measurement based on HS algorithm
Hua-Kang Nong, Bai-Wei Guo
In micro aircraft design and testing, as well as motor and rotational motion monitoring, it will need to achieve a noncontact detection for rotational motion. HS (Horn and Schunck) algorithm is deduced under the premise that adjacent image intervals and the little change of image gray. HS algorithm is an optical flow calculation method that based on the image in the global smooth constraint. This paper propose an indicator that is used to characterize the optical flow field, and analyze the feasibility of the HS algorithm for the rotational motion measurement.
CFD simulation analysis and research based on engine air intake system of automotive
Xia Liu, Hua Jin Yan, Ning Tian, et al.
Traditional method for the design of automotive engine intake system has many issues, such as period, high costs, energy consumption and so on. The paper utilized one kind of CFD numerical simulation analysis based on the basic theory of CFD. It use the three-dimensional geometry modal grid, computational modeling and model analysis to identify the turbulence due to unreasonable design of air filter inlet position, and then through the test to verify the correctness of the results of CFD calculations. It provide a theoretical basis for the intake system structural optimization.
Non-fragile control for a class of uncertain systems with time-varying delay
Hejun Yao, Fushun Yuan, Yue Qiao
The problem of exponential stability non-fragile control for uncertain systems with time-varying delay is considered in this paper. Based on the Lyapunov stability theorem, and by using linear matrix inequality approach, a new approach is obtained to design the state feedback exponential stability non-fragile controller. By introducing a new Lyapunov functional, a sufficient exponential stability condition is given in terms of linear matrix inequality. With the non-fragile controller and the linear matrix inequality Control Toolbox in MATLAB, the simulation results are easier obtained.
Precision holding prediction model for moving joint surfaces of large machine tool
Mulan Wang, Xuanyu Chen, Wenzheng Ding, et al.
In large machine tool, the plastic guide rail is more and more widely used because of its good mechanical properties. Based on the actual operating conditions of the machine tool, this paper analyzes the precision holding performance of the main bearing surface of the large machine tool with plastic guide rail moving. The precision holding performance of the plastic sliding guide rail is studied in detail from several aspects, such as the lubrication condition, the operating parameters of the machine tool and the material properties. The precision holding model of the moving binding surface of the plastic coated guide rail is established. At the same time, the experimental research on the accuracy of the guide rail is carried out, which verifies the validity of the theoretical model.
The fast algorithm of spark in compressive sensing
Meihua Xie, Fengxia Yan
Compressed Sensing (CS) is an advanced theory on signal sampling and reconstruction. In CS theory, the reconstruction condition of signal is an important theory problem, and spark is a good index to study this problem. But the computation of spark is NP hard. In this paper, we study the problem of computing spark. For some special matrixes, for example, the Gaussian random matrix and 0-1 random matrix, we obtain some conclusions. Furthermore, for Gaussian random matrix with fewer rows than columns, we prove that its spark equals to the number of its rows plus one with probability 1. For general matrix, two methods are given to compute its spark. One is the method of directly searching and the other is the method of dual-tree searching. By simulating 24 Gaussian random matrixes and 18 0-1 random matrixes, we tested the computation time of these two methods. Numerical results showed that the dual-tree searching method had higher efficiency than directly searching, especially for those matrixes which has as much as rows and columns.
Soft sensor development for Mooney viscosity prediction in rubber mixing process based on GMMDJITGPR algorithm
In rubber mixing process, the key parameter (Mooney viscosity), which is used to evaluate the property of the product, can only be obtained with 4-6h delay offline. It is quite helpful for the industry, if the parameter can be estimate on line. Various data driven soft sensors have been used to prediction in the rubber mixing. However, it always not functions well due to the phase and nonlinear property in the process. The purpose of this paper is to develop an efficient soft sensing algorithm to solve the problem. Based on the proposed GMMD local sample selecting criterion, the phase information is extracted in the local modeling. Using the Gaussian local modeling method within Just-in-time (JIT) learning framework, nonlinearity of the process is well handled. Efficiency of the new method is verified by comparing the performance with various mainstream soft sensors, using the samples from real industrial rubber mixing process.
The control algorithm improving performance of electric load simulator
Chenxia Guo, Ruifeng Yang, Peng Zhang, et al.
In order to improve dynamic performance and signal tracking accuracy of electric load simulator, the influence of the moment of inertia, stiffness, friction, gaps and other factors on the system performance were analyzed on the basis of researching the working principle of load simulator in this paper. The PID controller based on Wavelet Neural Network was used to achieve the friction nonlinear compensation, while the gap inverse model was used to compensate the gap nonlinear. The compensation results were simulated by MATLAB software. It was shown that the follow-up performance of sine response curve of the system became better after compensating, the track error was significantly reduced, the accuracy was improved greatly and the system dynamic performance was improved.
Implementation of a secure USIM COS architecture for mobile payment applications
Juan Xiao, Juan Wu, Donglai Xu
In this paper, a secure architecture for mobile payment applications is designed, which combines public service platform, Trusted Service Manager(TSM) and Security Element Financial Certification Security Domain(SE FCSD). The architecture interconnects various platforms, authenticates the identity of transaction parties and detects the legality of applications. In the architecture, a more reliable secure channel protocol SCP10 is used to secure the confidentiality and integrity of data. Using NFC Universal Subscriber Identifier Module Card (NFC USIM card) as the hardware platform, a security element supporting the architecture is implemented, and also a USIM Chip Operating System (USIM COS) supporting both financial certification security domain and SCP10 protocol is designed. In order to improve the efficiency of identity authentication of USIM card, a compact digital certification is adopted to improve verification speed and save storage space. The experiment results and security tests show that the USIM COS has advantages of security and reliability , and it has commercial value and has achieved effective mobile payments.
A study on DITA in digital publishing
Research on the design and the overall structure of Darwin Information Typing Architecture to reflect the advantages of Darwin Information Typing Architecture in the digital publishing application. Topic-oriented fundamental principles and the mapping structure in Darwin Information Typing Architecture meet the needs of depth usage of digital publication content, achieved the principle "once produced, multiple release. DITA can be used in digital publishing throughout the process to achieve flexible reuse of delivery publications. By DITA rendering, multiple formats delivery publications could be achieved. Darwin Typing Information Architecture already has a lot of typical applications both domestic and foreign, with the rapid development of digital publishing industry, Darwin Typing Information Architecture will play a bigger role in the field of digital publishing.