All-dielectric resonant nanophotonics and high-efficient metasurfaces (Conference Presentation)
Author(s):
Yuri S. Kivshar
Show Abstract
Rapid progress in plasmonics is driven by the ability to enhance near-field effects with subwavelength localization of light. Recently, we observe the emergence of a new branch of nanophotonics aiming at the manipulation of strong optically-induced electric and magnetic Mie-type resonances in dielectric and semiconductor nanostructures with high refractive index. Unique ad-vantages of dielectric resonant optical nanostructures over their metallic counterparts are low dissipative losses, low heating, and the enhancement of both electric and magnetic fields. In this talk, I will review this new emerging field of nanophotonics and metasurfaces and demonstrate that Mie-type resonances in high-index dielectric nanoparticles and subwavelength structures can be exploited for new physics and novel functionalities of photonic structures especially in the non-linear regime.
Dynamical pixel manipulation of metasurfaces (Conference Presentation)
Author(s):
Jin-Qian Zhong
Show Abstract
Two-dimensional (2D) metamaterials or known as metasurfaces have attracted researchers’ attention due to their capability to manipulate the amplitudes, phases and polarization states of incident electromagnetic waves by conferring extra phase different phase at different positions through a super cell that is composed of different oriented structures. In other words, metasurfaces can achieve beam steering and wave shaping by imparting local, gradient phase shift to the incoming waves. With these abilities, metasurfaces can be applied to applications such as ultrathin invisibility cloaks, metasurface holograms, planar lenses and a vortex generator. With the above mentioned advantages and applications of metasurfaces, yet, all the demonstrated metasurfaces possess a main insufficiency that once the metasurfaces are designed and fabricated, their optical properties are then fixed without any chance for further manipulation, which limits their versatility in practical applications. Moreover, although some researchers employed dynamically changeable materials to achieve an active metasurface, such manipulation can only change the overall performance such as an operating frequency instead of changing the provided phase on each pixel of a metasurface. To solve this issue, we employ liquid crystal integrated with a metasurface and the combination could be thus be dynamically tuned via electric bias on each pixel of liquid crystals. Through this setup, we can alter the polarization state of the incident electromagnetic wave dynamically and thus manipulate the extra phase provided by each pixel. In this combination, liquid crystal is employed to change the incident polarization from 0 to 360-degree and the metasurface is designed to achieve four different output signals including phase modulated linear- and circular-polarized light and amplitude-modulated linear- and circular-polarized light. Meanwhile, the metasurfaces could also control the transmission efficiency of the device.
Light-matter interaction in planar plasmonic and metamaterial systems: equilibrium and non-equilibrium effects (Conference Presentation)
Author(s):
Kurt Busch
Show Abstract
Certain plasmonic and derived systems such as hyperbolic metamaterials promise large and broadband enhancements of the photonic density of states which, in turn, lead to corresponding enhancements of light-matter interaction. In this talk, recent theoretical advances regarding the most simple settings, i.e., planar materials and one- and zero-photon effects (spontaneous emission, Casimir-Polder force, and quantum friction) will be discussed with an emphasis regarding the appropriateness of different material models [1,2] and the validity of certain approximation schemes such as the Markov and the local thermal equilibrium approximation [3,4,5].
[1] F. Intravaia and K. Busch, Phys. Rev. A 91, 053836 (2015)
[2] D. Reiche et al., submitted
[3] F. Intravaia et al., Phys. Rev. Lett. 117, 100402 (2016)
[4] F. Intravaia et al., Phys. Rev. A 94, 042114 (2016)
[5] D. Reiche et al., submitted
On-chip near-wavelength diffraction gratings for surface electromagnetic waves
Author(s):
Evgeni A. Bezus;
Vladimir V. Podlipnov;
Andrey A. Morozov;
Leonid L. Doskolovich
Show Abstract
In the present work, on-chip dielectric diffraction gratings for steering the propagation of surface plasmon polaritons (SPP) are theoretically, numerically and experimentally studied. The investigated plasmonic gratings consist of dielectric ridges located on the SPP propagation surface (on the metal surface). In contrast to Bragg gratings, at normal incidence the periodicity direction of the grating is perpendicular to the SPP propagation direction. The studied gratings are designed using a simple plane-wave grating model and rigorously simulated using the aperiodic Fourier modal method for numerical solution of Maxwell’s equations. In particular, plasmonic grating-based beam splitter with subwavelength footprint in the propagation direction is presented. Along with the theoretical and numerical results, proof-of-concept experimental results are presented. The investigated grating-based plasmonic gratings were fabricated from resist on a silver film using electron beam lithography and characterized using the leakage radiation microscopy technique. The obtained experimental results are in good agreement with the performed numerical simulations. The proposed on-chip gratings may find application in the design of systems for optical information transmission and processing at the nanoscale.
On-chip phase-shifted Bragg gratings and their application for spatiotemporal transformation of Bloch surface waves
Author(s):
Leonid L. Doskolovich;
Evgeni A. Bezus;
Dmitry A. Bykov;
Nikita V. Golovastikov
Show Abstract
In this work, we study numerically and theoretically phase-shifted Bragg gratings (PSBG) for Bloch surface waves (BSW) propagating along the interfaces between a 1D photonic crystal and a homogeneous medium. The studied on-chip structure consists of a set of dielectric ridges located on the photonic crystal surface constituting two symmetrical onchip Bragg gratings separated by a defect layer. Rigorous simulation results demonstrate that the surface wave diffraction on the proposed on-chip PSBG is close to the diffraction of plane electromagnetic waves on conventional PSBG. For the considered examples, the correlation coefficient between the spectra of conventional PSBG and on-chip PSBG exceeds 0.99 near the resonance corresponding to the excitation of the eigenmodes localized in the defect layer. Conventional PSBG are widely used for spectral filtering as well as for temporal and spatial transformations of optical pulses and beams including differentiation and integration of pulse envelope or beam profile. In the present work, we discuss the capability of on-chip PSBG to implement the operations of temporal and spatial differentiation of BSW pulses and beams. The presented examples demonstrate the possibility of using the proposed structure for high-quality differentiation. The obtained results can be applied for the design of the prospective integrated systems for on-chip alloptical analog computing.
Enhanced fluorescence emission using bound states in continuum in a photonic crystal membrane
Author(s):
S. Romano;
G. Zito;
S. Managò;
E. Penzo;
S. Dhuey;
A. C. De Luca;
S. Cabrini;
V. Mocella
Show Abstract
Metasurfaces are two-dimensional structures, arrays of scatterers with subwavelength separation or optically thin planar films, allowing light manipulation and enabling specific changes of optical properties, as for example beam-steering, anomalous refraction and optical-wavefront shaping. Due to the fabrication simplicity, the metasurfaces offer an alternative to 3-D metamaterials and providing a novel method for optical elements miniaturization. It has been demonstrated that a metasurface can support Bound States in Continuum (BIC), that are resonant states by zero width, due to the interaction between trapped electromagnetic. Experimentally, this involves very narrow coupled resonances, with a high Q-factor and an extremely large field intensity enhancement, up to 6 orders of magnitude larger than the intensity of the incident beam. Here, we demonstrate that the field enhancement in proximity of the surface can be applied to boost fluorescence emission of probe molecules dispersed on the surface of a photonic crystal membrane fabricated in silicon nitride. Our results provide new solutions for light manipulation at the nanoscale, especially for sensing and nonlinear optics applications.
Experimentally demonstrate the surface state and optical topological phase transition of one dimensional hyperbolic metamaterials in Otto and KR configuration (Conference Presentation)
Author(s):
Chih Chung Wei;
Leng-Wai Un;
Ta-Jen Yen
Show Abstract
One-dimension hyperbolic metamaterials (1DHMMs) possess marvelous and considerable applications: hyperlens, spontaneous emission engineering and nonlinear optics. Conventionally, effective medium theory, which is only valid for long wavelength limit, was used to predict and analyze the optical properties and applications. In our previous works, we considered a binary 1DHMM which consists of alternative metallic and dielectric layers, and rigorously demonstrated the existence of surface states and bulk-interface correspondence with the plasmonic band theory from the coupled surface plasmon point of view. In the plasmonic band structure, we can classify 1DHMMs into two classes: metallic-like and dielectric-like, depending on the formation of the surface states with dielectric and metallic material, respectively. Band crossing exists only when the dielectric layers are thicker than the metallic ones, which is independent from the dielectric constants. Furthermore, the 1DHMMs are all metallic-like without band crossing. On the other hand, the 1DHMMs with band crossing are metal-like before the band crossing point, while they are dielectric-like after the band crossing point. In this work, we measure the surface states formed by dielectric material and 1DHMMs with band crossing in Otto configuration. With white light source and fixed incident angle, we measure the reflectance to investigate the existence of the surface states of 1DHMMs with various thickness ratio of metallic to dielectric layers. Conclusively, our results show that the surface states of 1DHMMs exist only when the thickness ratio is larger than 0.15. The disappearance of the surface states indicates the topological phase transition of 1DHMMs. Our experimental results will benefit new applications for manipulating light on the surface of hyperbolic metamaterials.
Quasimode computation in structures including several dispersive materials
Author(s):
Guillaume Demésy;
Mauricio Garcia-Vergara;
Frédéric Zolla;
André Nicolet
Show Abstract
We present a new method for the direct computation of the resonances associated with electromagnetic structures including media with highly dispersive permittivities. The FEM discretization of this problem leads to a generalized polynomial eigenvalue problem (PEP). We have developped a very general method to compute such modes and to limit the order of the PEP when the structure involves several dispersive media. As the accurate description of the dispersive permittivity in the form of a rational function of pulsation is a critical point in our method, we also describe a very general procedure to obtain a causal fit of the permittivity of materials from experimental data with very few parameters. Unlike other closed forms proposed in the literature, the particularity of this approach lies in its independence towards the material or frequency range at stake.
Spectral features of the Borrmann effect in 1D photonic crystals in the Laue geometry
Author(s):
V. B. Novikov;
B. I. Mantsyzov;
T. V. Murzina
Show Abstract
The Borrmann effect is known as an increase of the X-rays transmission of a perfect crystal in the Laue diffraction scheme when the Bragg diffraction condition are satisfied. Following the trend of the transfer of the X-ray phenomena into the optical spectral range, we experimentally observed and studied the optical analogue of the Borrmann effect for the case of one-dimensional photonic crystals (PhC). For the experiments we made the samples of PhCs based on porous fused silica, which reveal periodical modulation of the refractive index and light absorption. We show that in such structures the Borrmann effect reveals itself as increasing transmission when light propagates through a PhC at the Bragg angle of incidence. Pronounced differences of the Borrmann effect are observed for the PhC structures with light losses concentrated in high or low refractive index layers. The spectral features of the effect are analyzed both experimentally and theoretically.
Controlling coherence in epsilon-near-zero metamaterials (Conference Presentation)
Author(s):
Humeyra Caglayan;
Hodjat Hajian;
Ekmel Ozbay
Show Abstract
Recently, metamaterials with near-zero refractive index have attracted much attention. Light inside these materials experiences no spatial phase change and extremely large phase velocity, makes these peculiar systems applicable for realizing directional emission, tunneling waveguides, large-area single-mode devices and electromagnetic cloaks. In addition, epsilon-near-zero (ENZ) metamaterials can also enhance light transmission through a subwavelength aperture. Impedance-matched all-dielectric zero-index metamaterials which exhibit Dirac cone dispersions at center of the Brillouin zone, have been experimentally demonstrated at microwave regime and optical frequencies for transverse-magnetic (TM) polarization of light. More recently, it has been also proved that these systems can be realized in a miniaturized in-plane geometry useful for integrated photonic applications, i.e. these metamaterials can be integrated with other optical elements, including waveguides, resonators and interferometers. In this work, using a zero-index metamaterial at the inner and outer sides of a subwavelength aperture, we numerically and experimental study light transmission through and its extraction from the aperture. The metamaterial consists of a combination of two double-layer arrays of scatterers with dissimilar subwavelength dimensions. The metamaterial exhibits zero-index optical response in microwave region. Our numerical investigation shows that the presence of the metamaterial at the inner side of the aperture leads to a considerable increase in the transmission of light through the subwavelength aperture. This enhancement is related to the amplification of the amplitude of the electromagnetic field inside the metamaterial which drastically increases the coupling between free space and the slit. By obtaining the electric field profile of the light passing through the considered NZI/aperture/NZI system at this frequency we found out that in addition to the enhanced transmission there is an excellent beaming of the extracted light from the structure. We have theoretically and experimentally shown that using a zero-index metamaterial at the inner and outer sides of a metallic subwavelength slit can considerably enhance the transmission of light through the aperture and beam its extraction, respectively. This work has been supported by TUBITAK under Project No 114E505. The author H.C. also acknowledges partial support from the Turkish Academy of Sciences.
Metamaterials with toroidal fano-response (Conference Presentation)
Author(s):
Maria V. Kozhokar;
Alexey A. Basharin
Show Abstract
The static toroidal dipole was predicted by Zeldovich, which appears due to the static currents in atomic nuclei and explain disturbance of parity in the weak interaction. Physically, toroidal dipole is separated element of multipole expansion that corresponds to electrical currents circulating on a surface of gedanken torus along its meridians. Recently, the demonstration of dynamic toroidal dipolar response became possible in metamaterials composed of metamolecules of toroidal topology. Metamaterials with toroidal dipolar response allow to demonstrate a number of special properties such as novel type of EIT, optical activity, extremely strongly localized fields and anapole. We are interested in another property of toroidal metamaterials – magnetic Fano-type response caused by toroidal and magnetic moments in a particular metamolecule. In this paper we demonstrate theoretically and experimentally in microwave at the first time Fano-excitation in toroidal metamaterials. We suggested metamaterials based on a special structure of two types of planar metamolecules separated by dielectric layer.
One of them “Electric” type metamolecule is a planar conductive structure consisting of two symmetric split loops. The incident plane wave excites circular currents along the loops leading to a circulating magnetic moment and, as a result, to a toroidal moment. Moreover, due to the central gap electric moment can be excited in metamolecule. At the same time, destructive/constructive interference between toroidal and electric dipolar moments gives us unique effect as very strong E- field localization inside the central gap and anapole mode.
“Magnetic” type metamolecule is the inverted and rotated variant of the first structure. In contrast to the first case, here we expect very strong localization of magnetic field instead electric field. The magnetic field lines are whirling around the central junction of the metamolecule due to interference between toroidal and magnetic quadrupole moment. Importantly, this configuration allows us to reduce electric moment. Hence, we observe very strong magnetic field localization. Combined together, they support coupled Fano- response with separated strongly concentrated electric and magnetic fields. We discuss this effect and show diamagnetic response due to toroidal Fano-excitation. These metamaterials are promising for magnetic photonics and as Huygens elements.
Planar toroidal metamaterials: the role of losses, tunability and applications (Conference Presentation)
Author(s):
Nikita Volsky;
Vitaly Chuguevsky;
Kristina Schegoleva;
Alexey A. Basharin
Show Abstract
Toroidal topology appears in many types of metamaterials, which makes it impossible to describe the electrodynamic properties of such objects correctly without toroidal dipole. Dynamic toroidal dipole is excited by a closed loop of magnetic dipoles, which are caused by electric currents flowing along the meridians of the torus (poloidal currents). One of the most promising cases of toroidal excitation is toroidal excitation in planar metamaterials, which we discuss in this work. We show the peculiar properties of such metamaterials, like extremely high Q-factor and strong electric and magnetic field localization and tunable toroidal metamaterials. Especially we discuss the role of losses in toroidal metamaterials: radiating and non-radiating nature and show that the playing with them can be crucial for effects of high Q-factor applications. We demonstrate experimental characteristics that are in good agreement with modeling results. To prove the toroidal nature of our metamaterial we show the results of multipole expansion that considers toroidal dipole response.
All-dielectric perforated metamaterials with toroidal dipolar response (Conference Presentation)
Author(s):
Ivan Stenishchev;
Alexey A. Basharin;
Alexey A. Basharin
Show Abstract
We present metamaterials based on dielectric slab with perforated identical cylindrical clusters with perforated holes, which allow to support the toroidal dipolar response due to Mie-resonances in each hole. Note that proposed metamaterial is technologically simple for fabrication in optical frequency range.
Metamaterial can be fabricated by several methods. For instance, we may apply the molecular beam epitaxy method for deposition of Si or GaAs layers, which have permittivity close to 16. Next step, nanometer/micrometer holes are perforated by focused ion beam method or laser cutting method. Fundamental difference of proposed metamaterial is technological fabrication process. Classically all- dielectric optical metamaterials consist of nano-spheres or nano-discs, which are complicated for fabrication, while our idea and suggested metamaterials are promising prototype of various optical/THz all-dielectic devices as sensor, nano-antennas elements for nanophotonics.
Optical meta-films of alumina nanowire arrays for solar evaporation and optoelectronic devices (Conference Presentation)
Author(s):
Kyoungsik Kim;
Kyuyoung Bae;
Gumin Kang;
Seunghwa Baek
Show Abstract
Nanowires with metallic or dielectric materials have received considerable interest in many research fields for optical and optoelectronic devices. Metal nanowires have been extensively studied due to the high optical and electrical properties and dielectric nanowires are also investigated owing to the multiple scattering of light. In this research, we report optical meta-films of alumina nanowire arrays with nanometer scale diameters by fabrication method of self-aggregate process. The aluminum oxide nanowires are transparent from ultraviolet to near infrared wavelength regions and array structures have strong diffusive light scattering. We integrate those optical properties from the material and structure, and produce efficient an optical haze meta-film which has high transparency and transmission haze at the same time. The film enhances efficiencies of optical devices by applying on complete products, such as organic solar cells and LEDs, because of an expanded optical path length and light trapping in active layers maintaining high transparency. On the other hands, the meta-film also produces solar steam by sputtering metal on the aluminum oxide nanowire arrays. The nanowire array film with metal coating exhibits ultrabroadband light absorption from ultraviolet to mid-infrared range which is caused by nanofocusing of plasmons. The meta-film efficiently produces water steam under the solar light by metal-coated alumina arrays which have high light-to-heat conversion efficiency. The design, fabrication, and evaluation of our light management platforms and their applications of the meta-films will be introduced.
Liquid-like 2D plasmonic waves (Conference Presentation)
Author(s):
Baile Zhang
Show Abstract
We predict some novel 2D plasmonic waves as analogues of corresponding hydrodynamic wave phenomena, including plasmonic splashing and V-shaped ship-wakes excited by a swift electron perpendicularly impacting upon and moving parallel above a graphene monolayer, respectively.
2D plasmons have fueled substantial research efforts in the past few years. Recent studies have identified that 2D plasmons exhibit peculiar dispersion that is formally analogous to hydrodynamic deep-water-waves on a 2D liquid surface. Logically, many intricate and intriguing hydrodynamic wave phenomena, such as the splashing stimulated by a droplet or stone impacting a calm liquid surface and the V-shaped ship-wakes generated behind a ship when it travels over a water surface, should have counterparts in 2D plasmons, but have not been studied.
We fill this gap by investigating dynamic excitation of graphene plasmons when a monolayer graphene is perpendicularly impacted by a swift electron, as an analogue of hydrodynamic splashing. A central jet-like rise, called “Rayleigh jet” or “Worthington jet” as a hallmark in hydrodynamic splashing, is demonstrated as an excessive concentration of graphene plasmons, followed by plasmonic ripples dispersing like concentric ripples of deep-water waves. This plasmonic jet, serving as a monopole antenna, can generate radiation as analogue of splashing sound. This is also the first discussion on the space-time limitation on surface plasmon generation.
We then demonstrate a V-shaped plasmonic wave pattern when a swift electron moves parallel above a graphene monolayer, as an analogue of hydrodynamic ship-wakes. The plasmonic wake angle is found to be the same with the Kelvin angle and thus insensitive to the electron velocity when the electron velocity is small. However, the wake angle gradually decreases by increasing the electron’s velocity when the electron velocity is large, and thus transits into the Mach angle, being similar to recent development in fluid mechanics.
Collective dynamics of atoms embedded into negative index materials
Author(s):
Fang Wei;
Gao-xiang Li;
Zbigniew Ficek
Show Abstract
The dynamics of two two-level atoms embedded near to the interface of paired metamaterial slabs, one of negative permeability and the other of negative permittivity are studied. The interface behaves as a plasmonic waveguide composed of surface-plasmon polariton modes. It is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasma field to the atoms. In the case of the resonant coupling, the plasma field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms are completely equivalent to those of a four-atom system. Moreover, two threshold coupling strengths exist, one corresponding to the strength of coupling of the plasma field to the symmetric and the other to the antisymmetric modes of the system. The thresholds distinguish between the non-Markovian and Markovian regimes of the evolutions. The solutions predict a large and long living entanglement mediated by the plasma field in both Markovian and non-Markovian regimes of the evolution. We also show that a simultaneous Markovian and non-Markovian regimes of the evolution may occur in which the memory effects exist over a finite evolution time. Keywords: met
Nonlocal resonances in nanoplasmonics: analysis and simulations (Conference Presentation)
Author(s):
Milan Burda;
Pavel Kwiecien;
Jan Fiala;
Ivan Richter
Show Abstract
Traditionally in plasmonics, the most common approach in analyzing the resonant behavior of light interaction with plasmonic nanostructures has been to apply the local-response approximation (LRA), using – depending on the structure complexity and relation between a characteristic dimension and the interacting wavelength – either (quasi)analytic or numerical approaches. Recently, however, as the characteristic dimensions of such structures have scaled down, it has turned out that more complex models based on the nonlocal response (NOR), or even quantum interaction) of free electrons are desirable, in order to explain novel effects (new resonances, blue spectral shifts). Newly emerging approaches describing the complexity of interactions at nanoscale, connected with emerging new physics, are shown and discussed in this contribution, in comparison with the standard LRA. This reasoning has lately started a rapid increase of interest in developing appropriate nonlocal models. This new field is by no means completed; there are, actually, several nonlocal models existing, based on different starting conditions, and predicting phenomena. These are, however, not always consistent and equivalent. In particular, in our studies, we have concentrated on understanding the interaction and developing a simple model capable of predicting the longitudinal nonlocal response based on the linearized hydrodynamic model, applied to simple structures, such as a spherical nanoparticle. Within our model, we have also shown and compared several alternatives within the approach, with respect to inclusion of the current “damping”, (1) standard model (with a possible increased damping constant), (2) with damping in acceleration, and (3) with liquid-viscosity damping. Also, the extension to generalized nonlocal response model is considered. In parallel, as an alternative (and more general) approach, based on our previous rich experience with Fourier modal methods, we have considered and developed the extension of the rigorous coupled wave analysis technique capable of treating nonlocal response numerically, for more general structures.
Hybrid metal-organic conductive network with plasmonic nanoparticles and fluorene (Conference Presentation)
Author(s):
Laura Fontana;
Ilaria Fratoddi;
Roberto Matassa;
Giuseppe Familiari;
Iole Venditti;
Chiara Batocchio;
Elena Magnano;
Silvia Nappini;
Grigore Leahu;
Alessandro Belardini;
Roberto Li Voti;
Concita Sibilia
Show Abstract
For the development of new generation portable electronic devices, the realization of thin and flexible electrodes have a crucial role. Conductive organic systems can address this issue in different ways. Indeed, conductance in organic molecules were studied in different papers starting from seminal papers in last 70’s [1] up to recent ones [2]. Among organic species, conduction and electronic characteristics of Fluorene derivatives were studied in different configurations [3,4]. Unfortunately, the conductance of organic materials is limited by charge transport mechanism [5]. Hybrid system with organic conductive compounds covalently linked with metal centres can lead to enhanced conductivity [6]. Here we synthesized gold and silver nanoparticles (AuNPs and AgNPs) stabilized with a fluorene thiolate derivative, namely 9,9-Didodecyl-2,7-bis(acetylthio)fluorene (FL). In the synthesis process the metal nanoparticles (MNPs) size results to be around 5 nm in diameter [7]. When deposited on a planar substrate, the hybrid compound form a regular network of MNPs separated each other by fluorene spacers covalently linked by thiol groups [8]. We deposited the network on substrate with two interdigitated electrodes in order to measure conductive properties (I-V characteristics). In I-V measurements it results to be that AgNPs based network is 200 times more conductive than AuNPs one. Selective oxidation of AgNPs network close to positive electrodes gives rise to a Schottky diode behavior in the I-V characteristic that could find potential applications in nano-electronics devices. The fluorescence and extinction spectra of FL-AgNPs and FL-AuNPs where characterised. References [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977). [2] Hylke B. Akkerman, Paul W. M. Blom, Dago M. de Leeuw and Bert de Boer, Nature 441, 69 (2006). [3] Rajendra Prasad Kalakodimi, Aletha M. Nowak, and Richard L. McCreery, Chem. Mater. 17, 4939 (2005). [4] J. Wu, K. Mobley, and R. L. Mc Creery, J. Chem. Phys. 126, 024704 (2007). [5] Cristina Hermosa, Jose Vicente Álvarez, Mohammad-Reza Azani, Carlos J. Gómez-García, Michelle Fritz, Jose M. Soler, Julio Gómez-Herrero, Cristina Gómez-Navarro and Félix Zamora, Nature Commun. 4, 1709 (2013). DOI: 10.1038/ncomms2696. [6] Nunzio Tuccitto, Violetta Ferri, Marco Cavazzini, Silvio Quici, Genady Zhavnerko, Antonino Licciardello and Maria Anita Rampi, Nature Mater. 8, 41 (2009). [7] Quintiliani, M., Bassetti, M., Pasquini, C., et al. J. Mater. Chem. C, 2014, (2), pp. 2517-2527. [8] R. Matassa, G. Familiari, E. Battaglione, Concita Sibilia et al., Nanoscale, 2016,8, 18161-18169.
General rules for incorporating noble metal nanoparticles in organic solar cells
Author(s):
A. Ciesielski;
D. Switlik;
T. Szoplik
Show Abstract
Over the recent years, the influence of the addition of noble metal nanoparticles (Au, Ag, Al, Cu) into the bulk heterojunction (BHJ) solar cells on their efficiency of visible sunlight absorption has been excessively studied. However, several detailed studies were focused on compounds with similar chemical structure, and thus similar optical and electric properties. Such approach provides little help when it comes to admixing metallic nanoparticles into new compound families with different properties. Moreover, theoretical approaches frequently tend to neglect the fact, that nanoparticles have different dispersion relation than bulk material, which may lead to false conclusions. In this work, we consider additional dispersion modes in the metal permittivity due to finite size of the nanoparticles. We use Maxwell-Garnet effective medium approach (EMA), combined with the transfer matrix method, as well as finite-difference time-domain (FDTD) simulations, to create a set of general rules for incorporating noble metal nanoparticles into the active layer. These principles, based on assumed basic properties of the active layer (e.g. real and imaginary part of refractive index, thickness) provide optimal material, size spectrum and fill factor of nanoparticle inclusions in order to ensure the best absorption enhancement. Our results show, that the optimal concentrations for silver nanoparticles are about 50% greater than those determined without taking into account additional components in the permittivity of the metal.
Plasma phase separation in bismuth and antimony chalcogenide crystals
Author(s):
Nadezhda P. Netesova
Show Abstract
Oscillation parameters of narrow band layered crystals of bismuth selenide and telluride and antimony telluride for one and two oscillations are calculated. The electron oscillation crystal model equations of real epsilonr and imaginary epsilonι, ω epsilonι components of dielectric function, electronic losses L, ωL are given, special points of the optical functions epsilonr, epsilonι, ω epsilonι, L, ωL for boundary frequencies ω are probed. Ratios of energy balance of `sublattices on the basis of oscillation electronic model are revealed. It is concluded that these crystals at high hydrostatic pressures and low temperatures are turned into superconductors. In high-temperature superconductors spontaneous division into two phases: superconducting and isolating was revealed. Stratification on two phases in superconducting crystals has been confirmed experimentally: neutron graphic, neutron spectral and spectral researches, an electronic and nuclear paramagnetic resonance.
Study of resonant processes in plasmonic nanostructures for sensor applications (Conference Presentation)
Author(s):
Jiří Pirunčík;
Pavel Kwiecien;
Jan Fiala;
Ivan Richter
Show Abstract
This contribution is focused on the numerical studies of resonant processes in individual
plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles
and concominant localized surface plasmon resonance processes. Relevant models for
the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach
for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior
of nanoparticles are analyzed with special interest in morphology and sensor applications.
Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of
finite rectangular nanowires with square cross-sections. Systematic analysis is made for single
nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected
dolmen structures with varying gap between one nanowire transversely located with respect to parallel
couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.
Bulk magnetic terahertz metamaterial based on TiO2 microresonators (Conference Presentation)
Author(s):
Christelle Kadlec;
Michal Sindler;
Filip Dominec;
Hynek Němec;
Catherine Elissalde;
Patrick Mounaix;
Petr Kuzel
Show Abstract
Dielectric spheres with high permittivity represent a Mie resonance-based metamaterial. Owing
to its high far-infrared permittivity and low dielectric losses, TiO2 is a suitable material for the
realization of magnetic metamaterials based on micro-resonators for the terahertz (THz) range.
In a previous work, we experimentally demonstrated the magnetic effective response of TiO 2
microspheres dispersed in air, forming nearly a single-layer sample enclosed between two sapphire
wafers [1]. Here we embedded the polycrystalline TiO2 microparticles into a polyethylene matrix,
which enabled us to prepare a rigid bulk metamaterial with a controllable concentration of micro-
resonators.
TiO2 microspheres with a diameter of a few tens of micrometers were prepared by a bottom up
approach. A liquid suspension of TiO2 nanoparticles was first spray-dried producing fragile TiO2
microspheres. These were subsequently sintered in a furnace at 1200° C for two hours, in order to
consolidate individually each sphere. The particles show polycrystalline rutile structure with a porosity
of 15%. The microspheres were finally sieved and sorted along their diameters in order to obtain a
narrow size distribution. They were mixed with polyethylene powder and a pressure of 14 MPa was
used to prepare rigid pellets with random spatial distribution of the TiO2 microspheres.
Using finite-difference time-domain simulations, we investigated how the filling fraction and
the ratio between the permittivities of the microspheres and the host matrix affect the position and the
strength of the magnetic response associated with the lowest Mie mode. We found that a range of
negative effective magnetic permeability can be achieved for sufficiently high filling factors and
contrasts between the permittivities of the resonators and the embedding medium.
Using time-domain THz spectroscopy we experimentally characterized the response of the
realized structures and confirmed the magnetic character of their response. The retrieved spectra of the
effective dielectric permittivity and magnetic permeability were analyzed within Mie theory and
Maxwell-Garnett effective medium model in a quasi-stationary regime. We found out that the TiO2
microparticles embedded in polyethylene to fabricate the rigid metamaterials were probably elliptical
[2].
To provide a better understanding of the electromagnetic behavior we will also show a near-
field THz response of both isotropic polycrystalline and anisotropic monocrystalline TiO2 microsphere
[3,4]. In the anisotropic case, the microparticles were sintered at 1400° C. The annealing process
melted polycrystalline particle clusters into single crystal TiO2 spheres. It resulted in a strong dielectric
anisotropy of the spheres since the ordinary and extraordinary permittivities of bulk rutile in the THz
range are 80 and 150, respectively. A splitting of the first Mie mode into two orthogonal magnetic
dipole modes was then detected.
The discussed examples show a high potential of TiO2 micro-resonators to realize magnetic THz
metamaterials, from cheap mechanically stable structures up to anisotropic resonators.
References
[1] H. Němec et al., App. Phys. Lett. 100, 061117 (2012)
[2] M. Šindler et al., Opt. Express 24, 18304 (2016)
[3] O. Mitrofanov et al., Opt. Express 22, 23034 (2014),
[4] I. Khromova et al., Laser Photon. Rev. 10, 681 (2016)
Detection of terahertz radiation in metamaterials: giant plasmonic ratchet effect (Conference Presentation)
Author(s):
Sergey Rudin;
Greg Rupper;
Valentin Kachorovski;
Michael S. Shur
Show Abstract
The electromagnetic wave impinging on the spatially modulated two-dimensional electron liquid (2DEL) induces a direct current (DC) when the wave amplitude modulated with the same wave vector as the 2DEL but is shifted in phase (the ratchet effect). The recent theory of this phenomenon predicted a dramatic enhancement at the plasmonic resonances and a non-trivial polarization dependence [1]. We will present the results of the numerical simulations using a hydrodynamic model exploring the helicity dependence of the DC current for silicon, InGaAs, and GaN metamaterial structures at cryogenic and room temperatures. In particular we will report on the effect of the DEL viscosity and explore the nonlinear effects at large amplitudes of the helical electromagnetic radiation impinging on the ratchet structures. We will then discuss the applications of the ratchet effect for terahertz metamaterials in order to realize ultra-sensitive terahertz (THz) radiation detectors, modulators, phase shifters, and delay lines with cross sections matching the terahertz wavelength and capable of determining the electromagnetic wave polarization and helicity. To this end, we propose and analyze the four contact ratchet devices capable of registering the two perpendicular components of the electric currents induced by the elliptically or circularly polarized radiation and analyze the load impedance effects in the structures optimized for the ratchet metamaterial THz components. The analysis is based on the hydrodynamic model suitable for the multi-gated semiconductor structures, coupled self-consistently with Poisson’s equation for the electric potential. The model accounts for the effects of pressure gradients and 2DEL viscosity. Our numerical solutions are applicable to the wide ranges of electron mobility and terahertz power.
[1] I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Helicity-Driven Ratchet Effect Enhanced by Plasmons, Phys. Rev. Lett. 114, 246601, 15 June 2015
Deposition of organic molecules on gold nanoantennas for sensing
Author(s):
Jharna Paul;
Scott G. McMeekin;
Richard M. De La Rue;
Nigel P. Johnson
Show Abstract
The deposition of organic molecules on gold nanoantennas is reported through chemisorption for sensing in the midinfrared (mid-IR) spectral range. The specific nanostructures are gold asymmetric-split ring resonators (A-SRRs) based on circular-geometry with two different ‘arc’ lengths. The plasmonic resonant coupling technique was used to match the vibrational responses of the targeted molecules for their enhanced detection. Gold nanostructures are functionalised through chemisorption of octadecanethiol (ODT) in ethanol solution. The molecular vibrational responses were measured using a microscope coupled Fourier Transform Infrared (FTIR) spectroscopy. The experimental findings are closely supported using FDTD simulation. The modified nanoantennas surfaces are capable of supporting wide range of organic-sensing applications.
Plasmonic scattering nanostructures for efficient light trapping in flat CZTS solar cells
Author(s):
Omar A. M. Abdelraouf;
M. Ismail Abdelrahaman;
Nageh K. Allam
Show Abstract
CZTS (Cu2ZnSnS4) is a promising absorbing layer in photovoltaic devices, due to it is low cost, abundancy, and non-toxicity. However, recent developments in CZTS solar cells showed efficiency reaching barely over 9%. The low efficiency of CZTS solar cells is the main obstacle for replacing conventional high cost bulk silicon photovoltaic with CZTS solar cells. Herein, we propose an alternative route for enhancing the efficiency of CZTS solar cells by using plasmonic scattering nanostructures on the top surface of the CZTS active layer. Metamaterial and plasmonic nanostructures can confine, absorb, guide or scatter incident light in the nanoscale. Each one of these phenomena totally depends on the material type, shape, and geometrical dimensions of the used nanostructures. Therefore, theoretical study of different shapes and materials can guide the highest performance of desired phenomena. In this work, we studied the effect of changing plasmonic metal nanopyramids height, periodicity, and tapering angle on light scattering inside active layer of the CZTS solar cells. By sweeping pyramids height from 100nm to 300nm, periodicity of closed nanopyramids from 100nm to 180nm, and using pyramid base length 25nm, 50nm, 75nm, we found good enhancements in light absorption inside the active layer over reference planar CZTS structures. Each plasmonic CZTS solar cell structure is designed and analyzed using there dimensional (3D) finite element method (FEM) simulations. Using periodic boundary condition for simulating a smaller cell, and with mesh size is ten times smaller than lowest simulated wavelength. Input port energy came from air mass 1.5 sun light over wavelength range from 300nm to 800nm. Also, we studied effect of replacing molybdenum with refractory plasmonics titanium nitride (TiN). TiN is a promising plasmonic material as it has a similar plasmonic properties to gold at visible wavelength. After using TiN, we found also enhancements in light absorption. These interesting results could open a new way of integrating plasmonic scattering nanostructure inside flat CZTS solar cell for higher efficiency.