Hybrid carbon nanotube-polymer scaffolds for cardiac tissue regeneration
Author(s):
Samad Ahadian;
Locke Davenport-Huyer;
Nathaniel Smith;
Milica Radisic
Show Abstract
Due to insufficient supply of heart transplants and limited regenerative ability of heart tissues, cardiac tissue engineering has emerged to restore or regenerate the structure and function of native cardiac tissues. Scaffolds play a major role in fabrication of functional cardiac tissues, providing structural support, biodegradation, and cell affinity. However, currently used scaffolds in cardiac tissue regeneration tend to lack adequate electrical conductivity and favorable mechanical properties. In response to these concerns, carbon nanotubes (CNTs) have been used to enhance electrical and mechanical properties of scaffolds in cardiac tissue engineering. Here, we review different hybrid CNT-biomaterial scaffolds, both natural and synthetic, in cardiac tissue regeneration and their fabrication methods. Furthermore, CNT toxicity is also discussed. We further outline future trends in this research area toward using CNTs as a functional nanomaterial in cardiac tissue engineering.
Rapid structuring of proteins on filter paper using lithography
Author(s):
Tobias M. Nargang;
Frederik Kotz;
Nico Keller;
Dorothea Helmer;
Bastian E. Rapp
Show Abstract
Microfluidic paper based analytical devices (μPADs) are simple and cost efficient and can be used everywhere without the need for a high standard laboratory for obtaining a readout. These devices are thus especially suited for the developing world or crisis regions. To fabricate a bioanalytical test, certain biomolecules like proteins or antibodies have to be attached to paper strips. Common immobilization methods often rely on non-covalent, unoriented attachment which leads to reduced bioactivity of the immobilized species. Specific Immobilization of biomolecules on surfaces still poses a great challenge to biochemical research and applications.
We propose a method for the specific immobilization of biomolecules on functionalized filter paper using a maskless projection lithography setup. The paper was functionalized either by applying an adhesive protein coating or by covalent attachment of methacrylate groups. Fluorescently labelled biomolecules were attached by exploiting the formation of radical species upon bleaching of the fluorophore. A custom made maskless photo-lithography setup and a low cost approach were used to produce microscale biomolecule greyscale patterns. Protein patterns were visualized by fluorescence, enzyme patterns were tested for bioactivity by substrate conversion with colorimetric readout.
This method enables the creation of complex, highly specific bioactive protein patterns and greatly facilitates the production of μPADs.
Graphene doped ZnO films for photoelectrowetting on microchannels
Author(s):
Khaled Al-Aribe;
George K. Knopf
Show Abstract
Photoelectrowetting on dielectric surfaces can be used to drive droplets of liquid along reconfigurable paths on a microfluidic chip using controlled optical signals. These electrostatically activated surfaces along the desired path eliminate the need for precision molded channels and discrete functional components such as microvalves and micropumps. The photoelectrowetting effect exploits the surface tension of the droplet to maintain its volume during the transportation pathway and the photoelectric properties of the substrate surface are used to induce reversible fluidic flow. The active light-driven substrate is structured from graphene doped zinc-oxide (ZnO-G) films deposited on ITO coated glass. This substrate is coated from the ZnO-G side with Ruthenium-based dye (N719) to maximize its absorbability. The light triggers two forces that enable the droplet to be transported along the substrate. The first arises from the induced hydrophobicity gradient formed across the droplet contact area with the substrate surface. Exposing the ZnO-G film to a broad spectrum white light source alters the surface’s electric potential which induces a change in the droplet’s contact angle and the associated hydrophobicity. Once the hydrophobicity gradient is generated the droplet will start to move in the direction of the wetting zone. The second force is also created by the optical input when the absorbed light generates a photoelectric potential that produces a piezo-electrical effect on the ZnO-G film. The light triggered piezo-electrical behavior of the ZnO-G film can be used to generate the erasable microchannels that can guide droplet movement through a microfluidic chip. Preliminary experiments are performed to investigate the photoelectric potential of light activated ZnO-G films.
Laser induced forward transfer technique for the immobilization of biomaterials in biosensors applications (Conference Presentation)
Author(s):
Symeon Papazoglou;
Marianeza Chatzipetrou;
Maria Massaouti;
Ioanna Zergioti
Show Abstract
Laser Induced Forward Transfer (LIFT) is a direct write technique, able to create micropatterns of biomaterials on sensing devices. In this conference we will present a new approach using LIFT for the printing and direct immobilization of biomaterials on a great variety of surfaces, for bio-sensor applications. The basic requirement for the fabrication of a biosensor is to stabilize a biomaterial that brings the physicochemical changes in close proximity to a transducer. In this direction, several immobilization methods such as covalent binding and crosslinking have been implemented. The presence of the additional functionalization steps in the biosensors fabrication, is among the main disadvantages of chemical immobilization methods. Our approach employs the LIFT technique for the direct immobilization of biomaterials, either by physical adsorption or by covalent bonding of the biomaterials. The physical adsorption of the biomaterials, occurs on hydrophobic or super-hydrophobic surfaces, due to the transition of the wetting properties of the surfaces upon the impact of the biomaterials with high velocity. The unique characteristic of LIFT technique to create high speed liquid jets, leads to the penetration of the biomaterial in the micro/nano roughness of the surface, resulting in their direct immobilization, without the need of any chemical functionalization layers. Moreover, we will also present the direct immobilization of biomaterials on Screen Printed Electrodes, for enzymatic biosensors, with a limit of detection (LOD) for catechol at 150 nM, and protein biosensors, used for the detection of herbicides, with an LOD of 8-10 nM.
Investigation of the capillary flow through open surface microfluidic structures
Author(s):
Ahmed Taher;
Benjamin Jones;
Paolo Fiorini;
Liesbet Lagae
Show Abstract
The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step.
An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.
A 3D particle focusing device based on tightly curving 3D microchannels
Author(s):
Petra Paié;
Francesca Bragheri;
Dino Di Carlo;
Roberto Osellame
Show Abstract
Particle focusing is an important functionality useful in a wide set of biological applications. Nevertheless, it is still challenging to realize it in microfluidics, especially in a low pressure system, because of the intrinsic 2D nature of standard microfluidic devices; long channels or complicated device geometries with several lateral channels are usually needed to avoid this limitation. In this work we present the fabrication and optimization of a compact microfluidic chip, which is capable to perform 3D particle focusing at high flow rates, thanks to the superposition of inertial focusing and intense Dean flow in tightly curving 3D channels. The device layout comprises alternating helices and straight channel sections permitting particle focusing with driving pressures < 1 bar due to the compactness of this chip. Beads characterization is performed, demonstrating the possibility of the chip to effectively focus 15 μm size sample using a single inlet and with no need of additional lateral channels that could complicate the sample processing procedure. Femtosecond laser micromachining followed by chemical etching is used to fabricate the device. This technique is a two-step process that permits fabrication of 3D structures in fused silica substrates and it is a fundamental tool to obtain 3D helices in the substrate. A surface fabrication approach has been used to avoid tapered channels. We envisage the use of this chip for high speed flow cytometer applications.
AC electrothermal technique in microchannels
Author(s):
Alinaghi Salari;
Maryam Navi;
Colin Dalton
Show Abstract
Electrokinetic techniques have a wide range of applications in droplet, particle, and fluid manipulation systems. In general, they can be categorized into different subgroups including electroosmosis, electrothermal, electrophoresis, dielectrophoresis, etc. The AC electrothermal (ACET) technique has been shown to be very effective in applications which involve high conductivity fluids, such as blood, which are typically used in biomedical applications. In the past few years, the ACET effect has received considerable attention. Unlike AC electroosmosis (ACEO), the ACET effect shows plateaus in force in a wide frequency range. In other words, with electrothermal force, velocity is more steady and predictable at different frequencies, compared to ACEO and dielectrophoresis (DEP). Although electrothermal microflows form as a result of Joule heating in the fluid, due to high conduction of heat to the ambience, the temperature rise in the fluid is not so high as to threaten the nature of the biofluids. The average temperature rise resulting from the ACET effect is below 5 °K. In order to generate high strength AC electric fields, microfabricated electrode arrays are commonly used in microchannels. For pumping applications, it is essential to create asymmetry in the electric field, typically by having asymmetrical electrode pairs. There is no defined border between many electrokinetic techniques, and as such the point where electrothermal processes interferes with other electrokinetic techniques is not clear in the literature. In addition, there have been comprehensive reviews on micropumps, electrokinetics, and their subcategories, but the literature lacks a detailed up-to-date review on electrothermal microdevices. In this paper, a brief review is made specifically on electric fields in ACET devices, in order to provide an insight for the reader about the importance of this aspect of ACET devices and the improvements made to date.
Nanoscale patterning of biopolymers for controlled microfluidic behavior and drug release (Conference Presentation)
Author(s):
Akshit Peer;
Rabin Dhakal;
Rana Biswas;
Jaeyoun Kim
Show Abstract
It is of great interest to pattern biomaterials on the nanoscale and microscale to control diverse biomedical functions. We utilize soft lithographic technique to nanopattern poly (L-lactic acid) (PLLA) - a biodegradable and biocompatible polymer. We find that the PLLA surfaces nanopatterned with 750 nm pitch nanocup or nanocone arrays exhibit drug release rates 25-30% lower than that of the flat surface, which is counter-intuitive given the nanopattern-induced increase in their surface areas. Based on diffusion and microfluidic meniscus curvature minimization analyses, we attribute the decreased drug release rate to the incomplete wetting of the nanopatterned surface by the fluid.
Fast and cheap fabrication of molding tools for polymer replication
Author(s):
Christiane Richter;
Nadine Kirschner;
Matthias Worgull;
Bastian E. Rapp
Show Abstract
Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap (∼ 50 €) and fast (∼ 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.
3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones
Author(s):
G. Comina;
A. Suska;
D. Filippini
Show Abstract
Digital manufacturing (DM) offers fast prototyping capabilities and great versatility to configure countless architectures at affordable development costs. Autonomous lab-on-a-chip (LOC) devices, conceived as only disposable accessory to interface chemical sensing to cell phones, require specific features that can be achieved using DM techniques.
Here we describe stereo-lithography 3D printing (SLA) of optical components and unibody-LOC (ULOC) devices using consumer grade printers. ULOC devices integrate actuation in the form of check-valves and finger pumps, as well as the calibration range required for quantitative detection. Coupling to phone camera readout depends on the detection approach, and includes different types of optical components.
Optical surfaces can be locally configured with a simple polishing-free post-processing step, and the representative costs are 0.5 US$/device, same as ULOC devices, both involving fabrication times of about 20 min.
Implementation of a protocol for assembling DNA in a Teflon tube
Author(s):
Edmond J. Walsh;
Alexander Feuerborn;
Peter R. Cook
Show Abstract
Droplet based microfluidics continues to grow as a platform for chemical and biological reactions using small quantities of fluids, however complex protocols are rarely possible in existing devices. This paper implements a new approach to merging of drops, combined with magnetic bead manipulation, for the creation of ligated double-stranded DNA molecule using “Gibson assembly” chemistry. DNA assembly is initially accomplished through the merging, and mixing, of five drops followed by a thermal cycle. Then, integrating this drop merging method with magnetic beads enable the implementation of amore complete protocol consisting of nine wash steps,merging of four drop, transport of selective reagents between twelve drops using magnetic particles, followed by a thermal cycle and finally the deposition of a purified drop into an Eppendorf for downstream analysis. Gel electrophoresis is used to confirm successful DNA assembly.
Microfluidic particle manipulation using high frequency surface acoustic waves (Conference Presentation)
Author(s):
Ye Ai
Show Abstract
Precise manipulation of particles and biological cells is an essential process in various biomedical research fields, industrial and clinical applications, which remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. In addition, acoustic fields are advantageous to high power laser beams for non-contact optical tweezing in terms of biocompatibility, throughput and setup simplicity. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this presentation, I will talk about particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting using sub-millisecond pulses and selective capture of particles. Based on our research studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications.
Towards rapid prototyped convective microfluidic DNA amplification platform
Author(s):
Smrithi Ajit;
Hemanth Mithun Praveen;
Puneeth S. B.;
Abhishek Dave;
Bharat Sesham;
K. N. Mohan;
Sanket Goel
Show Abstract
Today, Polymerase Chain Reaction (PCR) based DNA amplification plays an indispensable role in the field of biomedical research. Its inherent ability to exponentially amplify sample DNA has proven useful for the identification of virulent pathogens like those causing Multiple Drug-Resistant Tuberculosis (MDR-TB). The intervention of Microfluidics technology has revolutionized the concept of PCR from being a laborious and time consuming process into one that is faster, easily portable and capable of being multifunctional. The Microfluidics based PCR outweighs its traditional counterpart in terms of flexibility of varying reaction rate, operation simplicity, need of a fraction of volume and capability of being integrated with other functional elements. The scope of the present work involves the development of a real-time continuous flow microfluidic device, fabricated by 3D printing-governed rapid prototyping method, eventually leading to an automated and robust platform to process multiple DNA samples for detection of MDRTB-associated mutations. The thermal gradient characteristic to the PCR process is produced using peltier units appropriate to the microfluidic environment fully monitored and controlled by a low cost controller driven by a Data Acquisition System. The process efficiency achieved in the microfluidic environment in terms of output per cycle is expected to be on par with the traditional PCR and capable of earning the additional advantages of being faster and minimizing the handling.
System-level integration of active silicon photonic biosensors
Author(s):
L. Laplatine;
O. Al'Mrayat;
E. Luan;
C. Fang;
S. Rezaiezadeh;
D. M. Ratner;
K. Cheung;
Y. Dattner;
L. Chrostowski
Show Abstract
Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to ± 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a“plug-and-play” style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.
Light field 3D endoscope based on electro-wetting lens array
Author(s):
Jin Su Lee;
Gyu Suk Jung;
Yong Hyub Won
Show Abstract
In this study, we propose light field 3D endoscope using the electro-wetting lens array. Compared to conventional light field endoscope technology, the electro-wetting micro lens array are not only switchable between 2D and 3D, but also adjusts the focal length to capture the varying images and control the diopter sufficiently fast (ms). The electro-wetting lens array has diameter 2.4mm and diopter -20D ~ 28D with 40ms of response time, which is an appropriate to get an endoscopic image. We also compare with light field 3D endoscope using a fixed focus lens array and our proposed light field 3D endoscope under the same condition. To achieve the electro-wetting lens array, parylene C layer are deposited on the silicon through hole substrate. In this study, we focus on the electro-wetting lens array fabrication and feasibility of a light field 3D system based on the electro-wetting micro lens array, accordingly we do not assemble the whole system in the real endoscope. Although it is performed on the optical stage, we successfully captured a light field images of several objects and reproduce a 3D image. Hereafter research, we will apply extended depth-of-field algorithm in our technology to improve the 3D image resolution and depth of field.
An optofluidic approach for gold nanoprobes based-cancer theranostics
Author(s):
Nishtha Panwar;
Peiyi Song;
Chengbin Yang;
Ken-Tye Yong;
Swee Chuan Tjin
Show Abstract
Suppression of overexpressed gene mutations in cancer cells through RNA interference (RNAi) technique is a therapeutically effective modality for oncogene silencing. In general, transfection agent is needed for siRNA delivery. Also, it is a tedious and time consuming process to analyze the gene transfection using current conventional flow cytometry systems and commercially available transfection kits. Therefore, there are two urgent challenges that we need to address for understanding and real time monitoring the delivery of siRNA to cancer cells more effectively. One, nontoxic, biocompatible and stable non-viral transfection agents need to be developed and investigated for gene delivery in cancer cells. Two, new, portable optofluidic methods need to be engineered for determining the transfection efficiency of the nanoformulation in real time. First, we demonstrate the feasibility of using gold nanorods (AuNRs) as nanoprobes for the delivery of Interleukin-8 (IL-8) siRNA in a pancreatic cancer cell line- MiaPaCa-2. An optimum ratio of 10:1 for the AuNRs–siRNA nanoformulation required for efficient loading has been experimentally determined. Promising transfection rates (≈88%) of the nanoprobe-assisted gene delivery are quantified by flow cytometry and fluorescence imaging, which are higher than the commercial control, Oligofectamine. The excellent gene knockdown performance (over 81%) of the proposed model support in vivo trials for RNAi-based cancer theranostics. In addition to cancer theranostics, our nanoprobe combination can be also applied for disease outbreak monitoring like MERS. Second, we present an optical fiber-integrated microfluidic chip that utilizes simple hydrodynamic and optical setups for miniaturized on-chip flow cytometry. The chip provides a powerful and convenient tool to quantitatively determine the siRNA transfection into cancer cells without using bulky flow cytometer. These studies outline the role of AuNRs as potential non-viral gene delivery vehicles, and their suitability for microfluidics-based lab-on-chip flow cytometry applications.
A portable fluorescent sensing system using multiple LEDs
Author(s):
Young-Ho Shin;
Jonathan Z. Barnett;
M. Teresa Gutierrez-Wing;
Kelly A. Rusch;
Jin-Woo Choi
Show Abstract
This paper presents a portable fluorescent sensing system that utilizes different light emitting diode (LED) excitation lights for multiple target detection. In order to identify different analytes, three different wavelengths (385 nm, 448 nm, and 590 nm) of excitation light emitting diodes were used to selectively stimulate the target analytes. A highly sensitive silicon photomultiplier (SiPM) was used to detect corresponding fluorescent signals from each analyte. Based on the unique fluorescent response of each analyte, it is possible to simultaneously differentiate one analyte from the other in a mixture of target analytes. A portable system was designed and fabricated consisting of a display module, battery, data storage card, and sample loading tray into a compact 3D-printed jig. The portable sensor system was demonstrated for quantification and differentiation of microalgae (Chlorella vulgaris) and cyanobacteria (Spirulina) by measuring fluorescent responses of chlorophyll a in microalgae and phycocyanin in cyanobacteria. Obtained results suggest that the developed portable sensor system could be used as a generic fluorescence sensor platform for on-site detection of multiple analytes of interest.
Chemiluminescence generation and detection in a capillary-driven microfluidic chip
Author(s):
Charlotte Ramon;
Yuksel Temiz;
Emmanuel Delamarche
Show Abstract
The use of microfluidic technology represents a strong opportunity for providing sensitive, low-cost and rapid diagnosis at the point-of-care and such a technology might therefore support better, faster and more efficient diagnosis and treatment of patients at home and in healthcare settings both in developed and developing countries. In this work, we consider luminescence-based assays as an alternative to well-established fluorescence-based systems because luminescence does not require a light source or expensive optical components and is therefore a promising detection method for point-of-care applications. Here, we show a proof-of-concept of chemiluminescence (CL) generation and detection in a capillary-driven microfluidic chip for potential immunoassay applications. We employed a commercial acridan-based reaction, which is catalyzed by horseradish peroxidase (HRP). We investigated CL generation under flow conditions using a simplified immunoassay model where HRP is used instead of the complete sandwich immunocomplex. First, CL signals were generated in a capillary microfluidic chip by immobilizing HRP on a polydimethylsiloxane (PDMS) sealing layer using stencil deposition and flowing CL substrate through the hydrophilic channels. CL signals were detected using a compact (only 5×5×2.5 cm3) and custom-designed scanner, which was assembled for less than $30 and comprised a 128×1 photodiode array, a mini stepper motor, an Arduino microcontroller, and a 3D-printed housing. In addition, microfluidic chips having specific 30-μm-deep structures were fabricated and used to immobilize ensembles of 4.50 μm beads functionalized with HRP so as to generate high CL signals from capillary-driven chips.
Multipath trapping dynamics of nanoparticles towards an integrated waveguide with a high index contrast
Author(s):
Hao Tian;
Lionel C. Kimerling;
Jurgen Michel;
Guifang Li;
Lin Zhang
Show Abstract
Optical trapping and manipulation of nanoparticles in integrated photonics devices have recently received increasingly more attention and greatly facilitated the advances in lab-on-chip technologies. In this work, by solving motion equation numerically, we study the trapping dynamics of a nanoparticle near a high-index-contrast slot waveguide, under the influence of water flow perpendicular to the waveguide. It is shown that a nanoparticle can go along different paths before it gets trapped, strongly depending on its initial position relative to the integrated waveguide. Due to localized optical field enhancement on waveguide sidewalls, there are multiple trapping positions, with a critical area where particle trapping and transport are unstable. As the water velocity increases, the effective trapping range shrinks, but with a rate that is smaller than the increasing of water velocity. Finally, the trapping range is shown to decrease for smaller slot width that is below 100 nm, even though smaller slot width generates stronger local optical force.
Piezoelectric micromachined ultrasonic transducers and micropumps: from design to optomicrofluidic applications
Author(s):
Shadi Khazaaleh;
Numan Saeed;
Inas Taha;
Mateusz T. Madzik;
Jaime Viegas
Show Abstract
In this work, we present the experimental results of a new wafer-level production platform for aluminum nitride based piezoelectric micromachined ultrasonic transducers (PMUTs), operated by lower than 10 V peak-to-peak signals, and covering ultrasonic frequency ranges from 200 kHz up to 10 MHz, with measured axial displacements ranging from a few nanometers up to 600 nm. The fabricated devices have a low footprint of (130x130) μm2. The experimental results are in excellent agreement with finite-element method simulations. The small footprint and driving voltages of these piezo-microactuators are well suited for the development of micropump and micromixer designs for portable microfluidics applications.
Optimized AC electrothermal micromixing design for biofluid systems
Author(s):
Alinaghi Salari;
Maryam Navi;
Colin Dalton
Show Abstract
Electrokinetic fluid delivery techniques have many applications in biofluid transport systems. Among those, the electrothermal fluid transport technique is a highly effective method for fluids with high conductivities, in the order of 0.02- 1 S/m. The ACET phenomenon has been mainly reported in the literature for micropumping and micromixing applications using coplanar asymmetric electrode arrays at the bottom of a microchannel. Recently, a novel ACET micropump based on a multi-electrode array system was reported. In this micropump, multiple asymmetric electrode arrays located on different sidewalls of the microchannel were utilized. Following this work, we implemented the same concept for a micromixing mechanism. For the sake of simplicity, only two coplanar microelectrode pairs, on the top and bottom of a 2D micro chamber, were considered. By applying different species concentration at one corner of the chamber, mixing of the fluid can be characterized throughout the chamber area. Simulations were performed using COMSOL Multiphysics. The results showed that using opposed asymmetric microelectrode pairs can provide a 74% decrease in the mixing time compared to identical pairs. Also, a chamber which has two electrode pairs, can have a 67% decrease in mixing time compared to one which has only one pair.
Microfluidic separation of particles from whole blood using shear induced diffusion
Author(s):
Jian Zhou;
Chunglong Tu;
Yitao Liang;
Bobo Huang;
Yifeng Fang;
Xiao Liang;
Ian Papautsky;
Xuesong Ye
Show Abstract
Extraction of cells of interest directly from human whole blood is in high demand. However, it is extremely challenging due to the excessive cell populations leading to non-Newtonian hemodynamics. Herein, we describe a simple microfluidic approach to take the advantage of the concentrated cells for direct isolation of larger particles spiked in whole blood, which could shift the current paradigm in cell separation from low volume fraction sample to concentrated suspension and from the Newtonian to non-Newtonian fluid. Our device fabricated in Polydimethylsiloxane (PDMS) via standard soft photolithography. With saline solution flowing in the channel center and splitting the blood sample into two side streams, the spiked larger particles rapidly migrate from the whole blood to the saline stream without external force fields. Our experimental results has suggested such intriguing particle translocation is mainly attributed to the shear induced diffusion in concentrated suspensions as well as the viscoelastic property of blood. Inertial force can also contribute to this process. The harmonic interactions among these passive force fields have successfully led to extraction, focusing and separation of 18.7 μm –diameter particles from whole blood with a high efficiency (~89%) and a superb throughput (>106 cells per second), which outperforms existing approaches such as spiral microchannels. Shortly, we have demonstrated a novel simple and effective separation scheme which directly works for complex bodily samples without a hassle of sample preparation. Our approach is very promising as it holds potential to separate cells from whole blood.
Peptide library synthesis on spectrally encoded beads for multiplexed protein/peptide bioassays
Author(s):
Huy Q. Nguyen;
Kara Brower;
Björn Harink;
Brian Baxter;
Kurt S. Thorn;
Polly M. Fordyce
Show Abstract
Protein-peptide interactions are essential for cellular responses. Despite their importance, these interactions remain largely uncharacterized due to experimental challenges associated with their measurement. Current techniques (e.g. surface plasmon resonance, fluorescence polarization, and isothermal calorimetry) either require large amounts of purified material or direct fluorescent labeling, making high-throughput measurements laborious and expensive. In this report, we present a new technology for measuring antibody-peptide interactions in vitro that leverages spectrally encoded beads for biological multiplexing. Specific peptide sequences are synthesized directly on encoded beads with a 1:1 relationship between peptide sequence and embedded code, thereby making it possible to track many peptide sequences throughout the course of an experiment within a single small volume. We demonstrate the potential of these bead-bound peptide libraries by: (1) creating a set of 46 peptides composed of 3 commonly used epitope tags (myc, FLAG, and HA) and single amino-acid scanning mutants; (2) incubating with a mixture of fluorescently-labeled antimyc, anti-FLAG, and anti-HA antibodies; and (3) imaging these bead-bound libraries to simultaneously identify the embedded spectral code (and thus the sequence of the associated peptide) and quantify the amount of each antibody bound. To our knowledge, these data demonstrate the first customized peptide library synthesized directly on spectrally encoded beads. While the implementation of the technology provided here is a high-affinity antibody/protein interaction with a small code space, we believe this platform can be broadly applicable to any range of peptide screening applications, with the capability to multiplex into libraries of hundreds to thousands of peptides in a single assay.
Microfluidic system for in-vitro hypoxia assays
Author(s):
M. Busek;
S. Grünzner;
T. Steege;
C. Steinfelder;
F. Schmieder;
U. Klotzbach;
F. Sonntag
Show Abstract
Hereby presented is a microfluidic system, including a micro pump, an oxygenator and a cell culture chamber for perfusion controlled hypoxia assays. It consists of laser-structured polycarbonate (PC) foils and an elastomeric membrane which were joined together using thermal diffusion bonding. The elastomer forms an oxygenator element. The microfluidic system is characterized using non-invasive flow measurement based on micro-Particle-ImageVelocimetry (μPIV) and optical oxygen measurement utilizing the oxygen dependent fluorescence decay. Based on those experimental results and mathematical considerations, the oxygenator and mass transport phenomena within the microfluidic system can be described. This oxygen sensor, the micro pump, a controlling device and the gas mixture at the oxygenator forms a regulatory circuit to adjust the oxygen content in the cell culture chamber and helps to produce well-defined hypoxic conditions for the cells.
Lab-on-a-chip platform for high throughput drug discovery with DNA-encoded chemical libraries
Author(s):
S. Grünzner;
F. V. Reddavide;
C. Steinfelder;
M. Cui;
M. Busek;
U. Klotzbach;
Y. Zhang;
F. Sonntag
Show Abstract
The fast development of DNA-encoded chemical libraries (DECL) in the past 10 years has received great attention from pharmaceutical industries. It applies the selection approach for small molecular drug discovery. Because of the limited choices of DNA-compatible chemical reactions, most DNA-encoded chemical libraries have a narrow structural diversity and low synthetic yield. There is also a poor correlation between the ranking of compounds resulted from analyzing the sequencing data and the affinity measured through biochemical assays. By combining DECL with dynamical chemical library, the resulting DNA-encoded dynamic library (EDCCL) explores the thermodynamic equilibrium of reversible reactions as well as the advantages of DNA encoded compounds for manipulation/detection, thus leads to enhanced signal-to-noise ratio of the selection process and higher library quality. However, the library dynamics are caused by the weak interactions between the DNA strands, which also result in relatively low affinity of the bidentate interaction, as compared to a stable DNA duplex. To take advantage of both stably assembled dual-pharmacophore libraries and EDCCLs, we extended the concept of EDCCLs to heat-induced EDCCLs (hi-EDCCLs), in which the heat-induced recombination process of stable DNA duplexes and affinity capture are carried out separately. To replace the extremely laborious and repetitive manual process, a fully automated device will facilitate the use of DECL in drug discovery. Herein we describe a novel lab-on-a-chip platform for high throughput drug discovery with hi-EDCCL. A microfluidic system with integrated actuation was designed which is able to provide a continuous sample circulation by reducing the volume to a minimum. It consists of a cooled and a heated chamber for constant circulation. The system is capable to generate stable temperatures above 75 °C in the heated chamber to melt the double strands of the DNA and less than 15 °C in the cooled chamber, to reanneal the reshuffled library. In the binding chamber (the cooled chamber) specific retaining structures are integrated. These hold back beads functionalized with the target protein, while the chamber is continuously flushed with library molecules. Afterwards the whole system can be flushed with buffer to wash out unspecific bound molecules. Finally the protein-loaded beads with attached molecules can be eluted for further investigation.
Thermally assisted acoustophoresis as a new stiffness-based separation method
Author(s):
Ata Dolatmoradi;
Bilal El-Zahab
Show Abstract
The use of acoustophoretic separation devices provides a feasible means in biomedical diagnostics for label-free separation of diseased cells. Separation via acoustophoresis, however, has been restricted mainly to size contrast. Thermally-assisted acoustophoresis, as a newly-developed approach, integrates acoustic and thermal actuators on the same platform, enabling a stiffness-based separation when adjusted properly. Using this method, we have demonstrated the possibility of separating cell-mimicking liposomes based on their membrane stiffness. In a temperature-tuned microchannel with an overlaid ultrasonic standing wave, the acoustic contrast factor of a liposome is mainly determined according to its compressibility compared to that of medium. The sign of this factor was observed to flip to a negative value at a specific temperature, unique to the composition of the liposome. This sign switch was hypothesized to be due to the thermotropic phase transitions in the liposome’s membrane upon which an apparent effect on the compressibility is experienced by the liposome. By choosing the midpoint of the existing temperature window for two different compositions, within which liposomes were mechanically distinct enough to become differentiable in the acoustic radiation field, we examined the separation efficiency under different flow rate conditions.
Integration of systems biology with organs-on-chips to humanize therapeutic development
Author(s):
Collin D. Edington;
Murat Cirit;
Wen Li Kelly Chen;
Amanda M. Clark;
Alan Wells;
David L. Trumper;
Linda G. Griffith
Show Abstract
“Mice are not little people” – a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with “organs on chips” approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as “mesofluidic” pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.
Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing
Author(s):
Holger Becker;
Thomas Hansen-Hagge;
Andreas Kurtz;
Ralf Mrowka;
Stefan Wölfl;
Claudia Gärtner
Show Abstract
The development of new drugs is time-consuming, extremely expensive and often promising drug candidates fail in late stages of the development process due to the lack of suitable tools to either predict toxicological effects or to test drug candidates in physiologically relevant environments prior to clinical tests. We therefore try to develop diagnostic multiorgan microfluidic chips based on patient specific induced pluripotent stem cell (iPS) technology to explore liver dependent toxic effects of drugs on individual human tissues such as liver or kidney cells. Based initially on standardized microfluidic modules for cell culture, we have developed integrated microfluidic devices which contain different chambers for cell/tissue cultivation. The devices are manufactured using injection molding of thermoplastic polymers such as polystyrene or cyclo-olefin polymer. In the project, suitable surface modification methods of the used materials had to be explored. We have been able to successfully demonstrate the seeding, cultivation and further differentiation of modified iPS, as shown by the use of differentiation markers, thus providing a suitable platform for toxicity testing and potential tissue-tissue interactions.
Liquid-phase reduction synthesis of mono-dispersed gold nanoparticles on glass microfluidic device with flow rate control
Author(s):
Yu Tanabe;
Hiromasa Yagyu
Show Abstract
Gold nanoparticles (GNPs) in aqueous dispersion were synthesized on a low-cost glass microfluidic device developed by authors. The effect of a channel width and a flow rate on the size distribution of synthesized GNPs was reported for synthesis of mono-dispersed GNPs. A soda-lime glass substrates was processed by the micropowder blasting. Three holes were processed on the upper substrate, and Y-shaped microchannel was processed on the bottom substrate. Tetrachloroauric (III) acid aqueous solution for Au ion and the mixture of aqueous solution of sodium citrate acid for reducing agent and tannic acid for the protective agent were injected to a microchannel in the device by syringe pump. From the analysis of absorption peak at around 530nm in absorption spectrum, the synthesized GNPs on the device has sharpen peak in comparison with that of GNPs synthesized on the beaker. Moreover, the spectrum with low flow rate showed a sharpened peak in comparison with that of high rate. In the channel width of 260μm, the full width at half maximum (FWHM) at the absorption peak affecting to a distribution of diameter of GNPs were 79.2nm for 0.05mL/min and 92.9nm for 0.06mL/min. Conversely, FWHM in the channel width of 430μm showed almost constant value. From TEM images, the synthesized GNPs using the channel width of 260μm at the flow rate of 0.05mL/min was found to have the mean diameter of 11.5nm and coefficient of variation of 0.09. These results confirmed that the combination of low flow rate and small channel width were attributed to realizing the mono-dispersed GNPs.
Numerical study of insulator-based dielectrophoresis method for circulating tumor cell separation
Author(s):
Mohammad Aghaamoo;
Arian Aghilinejad;
Xiaolin Chen
Show Abstract
Insulator-based dielectrophoresis (iDEP) is known as a powerful technique for separation and manipulation of bioparticles. In recent years, iDEP designs using arrays of insulating posts have shown promising results towards reaching high-efficient bioparticles manipulation. However, there is still an essential need for providing comprehensive design guidelines and further optimizing such devices. In this research, we utilized numerical simulation to study, in detail, insulating posts iDEP technique with the specific application of bioparticles separation. To achieve this, we first developed a robust numerical model to predict the electric and fluid flow fields’ distribution, and how bioparticles are being manipulated inside the system. This enabled us to study the fundamental principles of such an iDEP method. In the next step, different design aspects of insulating posts iDEP were investigated. Specifically, we focused on the effect of posts geometry and configuration on the systems’ key operation criteria such as the effectiveness of the electric field non-uniformity, the flow velocity distribution and shear stress rates. Furthermore, we studied how different electrodes’ setup may affect the electric field distribution and consequently the device performance. Finally, the developed numerical tool was used to demonstrate separation of circulating tumor cells (CTCs) from white blood cells (WBCs). For this purpose, MDA-231 breast cancer cells and Granulocytes were chosen as an indicator of CTCs ad WBCs. Our developed numerical model and presented results lay the groundwork for design and fabrication of high-efficient insulating posts iDEP microchips.