
Proceedings Paper
A fast star image extraction algorithm for autonomous star sensorsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Star sensors have been developed to acquire accurate orientation information in recent decades superior to other attitude
measuring instruments. A star camera takes photos of the night sky to obtain star maps. An important step to acquire
attitude knowledge is to compare the features of the observed stars in the maps with those of the cataloged stars using
star identification algorithms. To calculate centroids of the star images before this step, they are required to be extracted
from the star maps in advance. However, some large or ultra large imaging detectors are applied to acquire star maps for
star sensors with the development of electronic imaging devices. Therefore, star image extraction occupies more and
more portions of the whole attitude measurement period of time. It is required to shorten star image extraction time in
order to achieve higher response rate. In this paper, a novel star image extraction algorithm is proposed which fulfill the
tasks efficiently. By scanning star map, the pixels brighter than the gray threshold are found and their coordinates and
brightness are stored in a cross-linked list. Data of these pixels are linked by pointers, while other pixels are neglected.
Therefore, region growing algorithm can be used by choosing the first element in the list as a starting seed. New seeds
are founded if the neighboring pixels are brighter than the threshold, and the last seed is deleted from the list. Next
search continues until no neighboring pixels are in the list. At that time, one star image is extracted, and its centroid is
calculated. Likely, other star images may be extracted, and then the examined seeds are deleted which are never
considered again. A new star image search always begins from the first element for avoiding unnecessary scanning. The
experiments have proved that for a 1024×1024 star map, the image extraction takes nearly 16 milliseconds. When
CMOS APS is utilized to transfer image data, the real-time extraction can be almost achieved.
Paper Details
Date Published: 30 November 2012
PDF: 9 pages
Proc. SPIE 8558, Optoelectronic Imaging and Multimedia Technology II, 855821 (30 November 2012); doi: 10.1117/12.999641
Published in SPIE Proceedings Vol. 8558:
Optoelectronic Imaging and Multimedia Technology II
Tsutomu Shimura; Guangyu Xu; Linmi Tao; Jesse Zheng, Editor(s)
PDF: 9 pages
Proc. SPIE 8558, Optoelectronic Imaging and Multimedia Technology II, 855821 (30 November 2012); doi: 10.1117/12.999641
Show Author Affiliations
Xifang Zhu, Changzhou Institute of Technology (China)
Feng Wu, Changzhou Institute of Technology (China)
Soochow Univ. (China)
Feng Wu, Changzhou Institute of Technology (China)
Soochow Univ. (China)
Qingquan Xu, Changzhou Institute of Technology (China)
Published in SPIE Proceedings Vol. 8558:
Optoelectronic Imaging and Multimedia Technology II
Tsutomu Shimura; Guangyu Xu; Linmi Tao; Jesse Zheng, Editor(s)
© SPIE. Terms of Use
