Share Email Print

Proceedings Paper

Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm
Author(s): Zhong Ren; Guodong Liu; Zhen Huang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The image reconstruction is a key step in medical imaging (MI) and its algorithm’s performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

Paper Details

Date Published: 30 November 2012
PDF: 10 pages
Proc. SPIE 8558, Optoelectronic Imaging and Multimedia Technology II, 85581C (30 November 2012); doi: 10.1117/12.981653
Show Author Affiliations
Zhong Ren, Jiangxi Science and Technology Normal Univ. (China)
Guodong Liu, Jiangxi Science and Technology Normal Univ. (China)
Zhen Huang, Jiangxi Science and Technology Normal Univ. (China)

Published in SPIE Proceedings Vol. 8558:
Optoelectronic Imaging and Multimedia Technology II
Tsutomu Shimura; Guangyu Xu; Linmi Tao; Jesse Zheng, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?