Share Email Print

Proceedings Paper

Picture Archiving And Communications Systems (PACS) And Radiation Therapy Planning: Data And Workstation Requirements
Author(s): R. Judy Reavis; Jason S. Zielonka
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

PACS literature to date has emphasized the needs of diagnostic imaging; however, the ability to acquire, manipulate, and display data derived from multiple imaging modalities is also vital in the practice of radiation oncology and radiation therapy planning (RTP). Radiographic or scintigraphic images for RTP must include specific spatial calibration data, as well as data relating image acquisition to anatomic localization within the patient. The digital nature of PACS images and displays allows the radiation oncologist to interactively assist in evaluating whether or not near-by structures are tumor-free. The radiation oncologist may also need to review nonradiographic diagnostic images (e.g., endoscopic images or pathology tissue specimens). Finally, it must be possible to take data such as isodose lines and superimpose them onto images relating the proposed therapy field to patient anatomy. Not only would this be useful for the radiation oncologist, but it would also provide information currently not easily available to the diagnostician and useful in subsequent diagnostic efforts. The three-dimensional (volumetric) data creation for RTP is not currently widespread because of the difficulties in converting images into a coherent, reliable and registered data set; this is the unique contribution of PACS. Software must be developed to permit creation of volumetric models based on data derived from both planar images and various tomographic modalities, including calibration and localizaton data for accurate image registration and scaling. This will permit positive definition of tumor volume by diagnosticians and the radiation oncologists as an initial portion of the therapy planning process. As a part of the underlying data structure for such systems, there must be some uniformity of image format between modalities and vendors; this has been adequately addressed by the Digital Imaging and Communications Interface Standard recently adopted by the American College of Radiology and the National Electrical Manufacturers' Association (ACR-NEMA). In addition, such standardization efforts must also incorporate the necessary calibration and coordinate data. This paper will examine some of the unique requirements for PACS (and PACS workstations)optimized for RTP. The assumption is made here that these are not independent, self-sufficient devices; rather, they are subsystems of a PACS network, capable of sharing certain resources.

Paper Details

Date Published: 12 June 1986
PDF: 8 pages
Proc. SPIE 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems, (12 June 1986); doi: 10.1117/12.975456
Show Author Affiliations
R. Judy Reavis, V.A. Medical Center Milwaukee, Wisconsin (United States)
Jason S. Zielonka, Medical College of Wisconsin, V.A. Medical Center (United States)

Published in SPIE Proceedings Vol. 0626:
Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems
Samuel J. Dwyer III; Roger H. Schneider, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?