Share Email Print

Proceedings Paper

Short-term change detection for UAV video
Author(s): Günter Saur; Wolfgang Krüger
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the last years, there has been an increased use of unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. An important application in this context is change detection in UAV video data. Here we address short-term change detection, in which the time between observations ranges from several minutes to a few hours. We distinguish this task from video motion detection (shorter time scale) and from long-term change detection, based on time series of still images taken between several days, weeks, or even years. Examples for relevant changes we are looking for are recently parked or moved vehicles. As a pre-requisite, a precise image-to-image registration is needed. Images are selected on the basis of the geo-coordinates of the sensor’s footprint and with respect to a certain minimal overlap. The automatic imagebased fine-registration adjusts the image pair to a common geometry by using a robust matching approach to handle outliers. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed length of shadows, and compression or transmission artifacts. To detect changes in image pairs we analyzed image differencing, local image correlation, and a transformation-based approach (multivariate alteration detection). As input we used color and gradient magnitude images. To cope with local misalignment of image structures we extended the approaches by a local neighborhood search. The algorithms are applied to several examples covering both urban and rural scenes. The local neighborhood search in combination with intensity and gradient magnitude differencing clearly improved the results. Extended image differencing performed better than both the correlation based approach and the multivariate alternation detection. The algorithms are adapted to be used in semi-automatic workflows for the ABUL video exploitation system of Fraunhofer IOSB, see Heinze et. al. 2010.1 In a further step we plan to incorporate more information from the video sequences to the change detection input images, e.g., by image enhancement or by along-track stereo which are available in the ABUL system.

Paper Details

Date Published: 8 November 2012
PDF: 11 pages
Proc. SPIE 8537, Image and Signal Processing for Remote Sensing XVIII, 85370R (8 November 2012); doi: 10.1117/12.975156
Show Author Affiliations
Günter Saur, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Wolfgang Krüger, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)

Published in SPIE Proceedings Vol. 8537:
Image and Signal Processing for Remote Sensing XVIII
Lorenzo Bruzzone, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?