Share Email Print

Proceedings Paper

Caveats in calculating crop specific pixel purity for agricultural monitoring using MODIS time series
Author(s): Gregory Duveiller
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Monitoring agriculture at regional to global scales with remote sensing requires the use of sensors that can provide information over large geographic extends with a high revisit frequency. Current sensors satisfying these criteria have, at best, a spatial resolution of the same order of magnitude as the field sizes in most agricultural landscapes. Research has demonstrated that crop specific monitoring is possible with medium spatial resolution instruments (such as with MODIS, 250 m at nadir) if a selection of purer time series is isolated. To do so, a mask of the target crop is necessary at fine spatial resolution in order to calculate the crop specific pixel purity at the coarser scale. Pixel purity represents the relative contribution of the surface of interest to the signal detected by the remote sensing instrument. A straightforward way to compute pixel purity is to calculate the area of the target crop that falls in the coarse spatial resolution grid. However, the observation footprint is generally larger than the squared projection of the pixel, especially when the observation is taken with high scan angles like MODIS does most of the time. Furthermore, the relative contribution within this footprint is not homogeneous: it depends on the spatial response of the sensor. This study analyses the error committed when crop specific pixel purity is calculated using the straightforward method instead of integrating the spatial response and taking into account gridding artefacts and other MODIS particularities such as the bow-tie effect. Differences caused by the orbit, i.e. whether MODIS is on a descending orbit for Terra or an ascending one for Aqua, are also explored. Finally, the consequence of overestimating the spatial response when calculating pixel purity is illustrated by analysing the effect on different agricultural landscapes.

Paper Details

Date Published: 19 October 2012
PDF: 10 pages
Proc. SPIE 8531, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, 85310J (19 October 2012); doi: 10.1117/12.974625
Show Author Affiliations
Gregory Duveiller, European Commission Joint Research Ctr. (Italy)

Published in SPIE Proceedings Vol. 8531:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?