Share Email Print

Proceedings Paper

Image-Projection Ion-Beam Lithography
Author(s): Paul A. Miller
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Image-projection ion-beam lithography promises high-throughput patterning with wide process latitude, excellent resolution, and minimal damage to underlying circuit layers. The process involves extracting helium ions from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto the wafer. A key feature is the use of image demagnification which simplifies reticle fabrication and inspection, and leads to low power loading on the reticle and long reticle life. In this paper we report computational studies aimed at improving field size, linearity, and telecentricity over that demonstrated experimentally in the pioneering work by Ion Microfabrication Systems, GmbH. (Vienna) during the past decade. We study a mechanically simple arrangement of equal-radii coaxial tubular lenses. We employ ion column optimization by simulated annealing and uncover a new optimization strategy which may be applicable in other optimization work. The resulting column design is much improved over our initial attempts based on an iterative optimization procedure. However, we still are unable to eliminate image distortion, and we would need either to rely on reticle predistortion or on use of a more complex electrode system for a production application.

Paper Details

Date Published: 1 August 1989
PDF: 12 pages
Proc. SPIE 1089, Electron-Beam, X-Ray, and Ion-Beam Technology: Submicrometer Lithographies VIII, (1 August 1989); doi: 10.1117/12.968511
Show Author Affiliations
Paul A. Miller, Sandia National Laboratories (United States)

Published in SPIE Proceedings Vol. 1089:
Electron-Beam, X-Ray, and Ion-Beam Technology: Submicrometer Lithographies VIII
Arnold W. Yanof, Editor(s)

© SPIE. Terms of Use
Back to Top