Share Email Print

Proceedings Paper

Optically Recording Velocity Interferometer System (ORVIS) For Subnanosecond Particle Velocity Measurements In Shock Waves
Author(s): D. D. Bloomquist; S. A. Sheffield
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An optically recording velocity interferometer system (ORVIS) has been developed to measure particle velocity with subnanosecond resolution for shock waves in condensed matter. The fringe pattern of a wide-angle Michelson interferometer was focused as a set of dots on the slit of a high speed streak camera, resulting in a continuous record of the fringe position as a function of time. This technique was employed to measure the particle velocity of a witness foil in a series of experiments to study the nature of detonation-driven shock waves. The present experiments demonstrated a time resolution of about 300 ps, and we believe that 20 ps resolution may be achievable with this technique. The improvement in time resolution of up to two orders of magnitude over current diagnostic techniques will be an aid in the study of several aspects of shock wave phenomena such as shock front thickness, detonation wave theory, fast relaxation at an impact plane, and fine structure in shock fronts associated with chemical reaction.

Paper Details

Date Published: 1 March 1983
PDF: 6 pages
Proc. SPIE 0348, 15th Intl Congress on High Speed Photography and Photonics, (1 March 1983); doi: 10.1117/12.967788
Show Author Affiliations
D. D. Bloomquist, Sandia National Laboratories (United States)
S. A. Sheffield, Sandia National Laboratories (United States)

Published in SPIE Proceedings Vol. 0348:
15th Intl Congress on High Speed Photography and Photonics
Lincoln L. Endelman, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?