Share Email Print

Proceedings Paper

Dynamic Stereo Display And Interaction With Surfaces Of Medical Objects
Author(s): Gabor T. Herman
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Three-dimensional (3D) surface display is an alternate way of presenting to the physician information that is available in a sequence of two-dimensional CT or MRI scans. The aim is to present organs (or parts of organs) as they would appear if they were removed from the body, possibly cut open, and viewed from user-selected directions. In recent years there have been a number of papers discussing the clinical utility of this approach. In nearly all these papers the presentation of the surface consists of single images of the objects of interest. In these monoscopic images, depth perception is conveyed by the differential shading that is computed as if light were shining on the surface. This is augmented by the silhouette of the external features. Since shading is dependent on the distance from the light source and the angle of the surface to the light rays, these two effects may oppose each other, especially with perception of details in depths of cavities. In addition, the detail inside a cavity cannot be silhouetted at any viewing angle. Since many anatomical surfaces have significant information in the depths of cavities (e.g., orbits, neural foramina, cardiac cavities), the addition of stereoscopic depth perception and motion should be clinically useful. In a recent article, we presented 3D surface displays in stereo, thereby providing an important additional cue for correct 3D depth perception. Here we discuss issues of software and hardware for dynamic stereo display and for 3D interaction with the stereoscopic images.

Paper Details

Date Published: 1 January 1986
PDF: 8 pages
Proc. SPIE 0671, Physics and Engineering of Computerized Multidimensional Imaging and Processing, (1 January 1986); doi: 10.1117/12.966687
Show Author Affiliations
Gabor T. Herman, University of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 0671:
Physics and Engineering of Computerized Multidimensional Imaging and Processing
Thomas F. Budinger; Zang-Hee Cho; Orhan Nalcioglu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?