Share Email Print

Proceedings Paper

Gated SIT Vidicon Streak Tube
Author(s): D. L. Dunbar; G. J. Yates; J. P. Black
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A recently developed prototype streak tube designed to produce high gain and resolution by incorporating the streak and readout functions in one envelope thereby minimizing photon-to-charge transformations and eliminating external coupling losses is presented. The tube is based upon a grid-gated Silicon-Intensified-Target Vidicon (SITV) with integral Focus Projection Scan (FPS) TV readout. Demagnifying electron optics (m=0.63) in the image section map the 40-mm-diameter photocathode image unto a 25-mm-diameter silicon target where gains ≥ 103 are achieved with only 10 KV accelerating voltage. This is compared with much lower gains (~ 50) at much higher voltages (~ 30 KV) reported for streak tubes using phosphor screens. Because SIT technology is well established means for electron imaging in vacuum, such fundamental problems as "backside thinning" required for electron imaging unto CCDs do not exist. The high spatial resolution (~ 30 1p/mm), variable scan formats, and high speed electrostatic deflection (250 mm2 areas are routinely rastered with 256 scan lines in 1.6 ms) available from FPS readout add versatility not available in CCD devices. Theoretical gain and spatial resolution for this design (developed jointly by Los Alamos National Laboratory and General Electric Co.) are compared with similar calculations and measured data obtained for RCA 73435 streaks fiber optically coupled to (1) 25-mm-diameter SIT FPS vidicons and (2) 40-mm-diameter MCPTs (proximity-focused microchannel plate image intensifier tubes) fiber optically coupled to 18-mm-diameter Sb2S3 FPS vidicons. Sweep sensitivity, shutter ratio, and record lengths for nanosecond duration (20 to 200 ns) streak applications are discussed.

Paper Details

Date Published: 14 January 1986
PDF: 6 pages
Proc. SPIE 0569, High Speed Photography, Videography, and Photonics III, (14 January 1986); doi: 10.1117/12.949872
Show Author Affiliations
D. L. Dunbar, University of California (United States)
G. J. Yates, University of California (United States)
J. P. Black, EG&G Kirtland Operations (United States)

Published in SPIE Proceedings Vol. 0569:
High Speed Photography, Videography, and Photonics III
Howard C. Johnson; Bernard G. Ponseggi, Editor(s)

© SPIE. Terms of Use
Back to Top