Share Email Print

Proceedings Paper

A Fluorescence Based Dissolved Oxygen Sensor
Author(s): Ronald McFarlane; M.Coreen Hamilton
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A sensor based on fluorescence quenching has been built to detect oxygen activity in gas and water. The sensor consists of a xenon flash bulb as a light source; an excitation wavelength band pass filter; a dichroic beam splitter; collimating and focussing lenses; a plastic clad silica (PCS) rod with the fluorophore immobilized at the tip of it; an emission wavelength band pass filter; a photomultiplier tube (PMT); a monitor PIN photodiode detector; and interface electronics to couple a computer to the rest of the sensor. The device demonstrates a reversible change in fluorescence quenching for changes in oxygen activity. The fluorescence signal seen by the PMT varies over a factor of 3, being highest at 0 oxygen activity and lowest at atmospheric oxygen activity. The device exhibits a 63 % response time of less than 1 second for gases and less than 10 seconds for oxygen dissolved in water. The noise floor of the sensor is approximately 1%. The present embodiment of the device was designed to allow the sensor to operate in the marine environment. The optical components, computer, batteries, and power supply circuitry are mounted on a rack that is enclosed in a pressure housing. The immobilized fluorophore is exposed to sea water. The light travels along the PCS rod, through a pressure seal, to the rest of the system. Present investigations are centered around long term stability of the fluorophore and constituents of the real ocean that will interfere with the quenching mechanism.

Paper Details

Date Published: 14 October 1987
PDF: 7 pages
Proc. SPIE 0798, Fiber Optic Sensors II, (14 October 1987); doi: 10.1117/12.941129
Show Author Affiliations
Ronald McFarlane, Seastar Instruments Ltd. (Canada)
M.Coreen Hamilton, Seastar Instruments Ltd. (Canada)

Published in SPIE Proceedings Vol. 0798:
Fiber Optic Sensors II
Anna Maria Verga Scheggi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?