Share Email Print

Proceedings Paper

Using High-Resolution Hand-Held Radiometers To Measure In-Situ Thermal Resistance
Author(s): Douglas M Burch; Donald F Krintz
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A field study was carried out to investigate the accuracy of using high-resolution radiometers to determine the in situ thermal resistance of building components having conventional residential construction. Two different types of radiometers were used to determine the thermal resistances of the walls of six test buildings located at the National Bureau of Standards. These radiometer thermal resistance measurements were compared to reference thermal resistance values determined from steady-state series resistance predictions, time-averaged heat-flow-sensor measurements, and guarded-hot-box measurements. When measurements were carried out 5 hours after sunset when the outdoor temperature was relatively steady and the heating plant was operated in a typical cyclic fashion, the following results were obtained: for lightweight wood-frame cavity walls, the radiometer procedures were found to distinguish wall thermal resistance 4.4 h.ft2- °F/Btu (0.77 m2•K/W) systematically higher than corresponding reference values. Such a discrimination will per-mit insulated and uninsulated walls to be distinguished. However, in the case of walls having large heat capacity (e.g., masonry and log), thermal storage effects produced large time lags between the outdoor diurnal temperature variation and the heat-flow response at the inside surface. This phenomenon caused radiometer thermal resistances to deviate substantially from corresponding reference values. This study recommends that the ANSI/ASHRAE Standard 101-1981 be modified requiring the heating plant to be operated in a typical cyclic fashion instead of being turned off prior to and during radiometer measurements.

Paper Details

Date Published: 27 March 1984
PDF: 10 pages
Proc. SPIE 0446, Thermosense VI: Thermal Infrared Sensing for Diagnostics and Control, (27 March 1984); doi: 10.1117/12.939139
Show Author Affiliations
Douglas M Burch, National Bureau of Standards (United States)
Donald F Krintz, National Bureau of Standards (United States)

Published in SPIE Proceedings Vol. 0446:
Thermosense VI: Thermal Infrared Sensing for Diagnostics and Control
Gordon J. Burrer, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?