Share Email Print

Proceedings Paper

Restoration For Linearly Degraded Digital Pictures By Using The Generalized Laplacian
Author(s): Shozo Kondo; Moriyuki Matsuo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

There are two kinds of restoration methods for linearly degraded digital pictures which have been proposed until now; the one is a spatial frequency filtering method by using two-dimensional Fourier transforms and the other is a method by using the generalized inverse of matrices. In both of the methods, a large amount of computing time and memory are required to restore a degraded picture, then it is quite difficult to construct an on-line picture restoration system. A restoration method proposed in this paper uses Neumann's series expangianof the generalized inverses of matrices. In this method,a degraded picture is restored by a matrix called a generalized Laplacian which is made from a matrix which represents degradation function. If degradation can be assumed to be shift-invariant,this method becomes to be quite simple and efficient, and requires only small amount of computing time and memory.

Paper Details

Date Published: 9 January 1984
PDF: 8 pages
Proc. SPIE 0432, Applications of Digital Image Processing VI, (9 January 1984); doi: 10.1117/12.936634
Show Author Affiliations
Shozo Kondo, Tokai University (Japan)
Moriyuki Matsuo, Tokai University (Japan)

Published in SPIE Proceedings Vol. 0432:
Applications of Digital Image Processing VI
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?