Share Email Print
cover

Proceedings Paper

Performance testing of lidar components subjected to exposure in space via MISSE 7 mission
Author(s): Narasimha S. Prasad
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

Paper Details

Date Published: 15 October 2012
PDF: 8 pages
Proc. SPIE 8519, Nanophotonics and Macrophotonics for Space Environments VI, 85190O (15 October 2012); doi: 10.1117/12.933275
Show Author Affiliations
Narasimha S. Prasad, NASA Langley Research Ctr. (United States)


Published in SPIE Proceedings Vol. 8519:
Nanophotonics and Macrophotonics for Space Environments VI
Edward W. Taylor; David A. Cardimona; Javier Pérez-Moreno; Nathan J. Dawson, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray