Share Email Print

Proceedings Paper

Analysis Of Laryngeal Biomechanics Of Deaf Speakers Utilizing High-Speed Cinematography
Author(s): Dale Evan Metz; Robert L. Whitehead
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Since the formalization of the myoelastic-aerodynamic theory of vocal fold vibration, it has been generally accepted that biomechanical and aerodynamic forces determine the nature of vocal fold vibration patterns, speaking fundamental frequency and vocal intensity. The speech of the deaf is frequently characterized by abnormal voice qualities and aberrant frequency and intensity variations suggesting mismanagement of the biomechanical and aerodynamic forces acting on the larynx. Unfortunately, efforts to remediate these abnormal laryngeal activities are frequently ineffective. It is reasonable to suggest that more effective remedial strategies could be developed if we had a better understanding of the underlying nature of the problems deaf persons experience when trying to control laryngeal functioning for speech purposes. Toward this end, we are employing high speed laryngeal filming procedures in conjunction with glottal impedance, respiratory kinematic and acous-tical measurement procedures to assess abnormal laryngeal functioning of deaf speakers. All data are collected simultaneously and are time-locked to facilitate analysis of specific laryngeal events. This unique combination of instrumentation has provided important insights regarding laryngeal functioning of the deaf. For example, we have observed that deaf speakers may assume abnormal glottal configurations during phonation that pro-hibit normal laryngeal functioning and disturb upper airway dynamics. Also, normal vibratory patterns are frequently disturbed. Instrumentation, data collection protocols, analysis procedures and selected findings will be discussed.

Paper Details

Date Published: 24 February 1982
PDF: 4 pages
Proc. SPIE 0291, 2nd Intl Symp of Biomechanics Cinematography and High Speed Photography, (24 February 1982); doi: 10.1117/12.932320
Show Author Affiliations
Dale Evan Metz, Rochester Institute of Technology (United States)
Robert L. Whitehead, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 0291:
2nd Intl Symp of Biomechanics Cinematography and High Speed Photography
Juris Terauds, Editor(s)

© SPIE. Terms of Use
Back to Top