Share Email Print

Proceedings Paper

Optical trapping of an encapsulated quantum dot using a double nanohole aperture in a metal film
Author(s): Ana ZehtabiOskuie; Jarrah Bergeron; Yuanjie Pang; Matthew Moffitt; Reuven Gordon
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Optical trapping is a promising technique which involves holding and manipulating small particles in a non-destructive way. Conventional trapping methods are able to trap dielectric particles with size greater than 100 nm. Using a double-nanohole in a metal film (with sharp tips where the holes meet) has enabled us to trap dielectric particles such as quantum dots and single proteins. This has been achieved even while using low laser power. Since the refractive index of the particle is larger than the surrounding environment, the aperture appears larger when the particle enters the aperture. This allows for more light transmitted through the aperture. The change in transmission changes the light momentum, and by Newton’s third law, there will be a force which will push back the particle to the equilibrium position. The change in light transmission also allows for facile detection of the trapping event. In this work, we use the double-nanohole to trap encapsulated quantum dots. Quantum dots are practically useful for several purposes including computing, biology and electronic devices. The ability to manipulate these particles with precision is critical to development of quantum dots usage in these fields. The CdS quantum dots, which are used in this work, are coated with a polymer shell, with a total size between 20 nm to 22 nm. The trapping and manipulation of quantum dots is promising for nanofabrication technologies that seek to place a quantum dot at a specific location in a plasmonic or nanophotonic structure. The next step in this research will be imaging of quantum dots using their fluorescence while trapping is occurring, so that a clear indication of trapping event will be available.

Paper Details

Date Published: 10 October 2012
PDF: 6 pages
Proc. SPIE 8458, Optical Trapping and Optical Micromanipulation IX, 84581P (10 October 2012); doi: 10.1117/12.930577
Show Author Affiliations
Ana ZehtabiOskuie, Univ. of Victoria (Canada)
Jarrah Bergeron, Univ. of Victoria (Canada)
Yuanjie Pang, Univ. of Victoria (Canada)
Matthew Moffitt, Univ. of Victoria (Canada)
Reuven Gordon, Univ. of Victoria (Canada)

Published in SPIE Proceedings Vol. 8458:
Optical Trapping and Optical Micromanipulation IX
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top