Share Email Print

Proceedings Paper

Experimental characterization of simultaneous gust alleviation and energy harvesting for multifunctional wing spars
Author(s): Ya Wang; Daniel J. Inman
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper details experimental characterization of an autonomous gust alleviation system building upon recent advances in harvester, sensor and actuator technology that have resulted in the possibility of thin, ultra-light weight multilayered wing spars. This multifunctional spar considers an autonomous gust alleviation system for small UAV powered by the harvested energy from ambient vibration during their normal flight conditions. Experimental characterization is performed on cantilever wing spars with micro-fiber composite transducers controlled by reduced energy controllers. Energy harvesting abilities of monolithic and micro fiber composite transducers are also compared for the multifunctional wing spar. Normal flight vibration and wind gust signals are simulated using Simulink and Control desk and then generated for experimental validation analysis for gust alleviation. Considering an aluminum baseline multifunctional wing spar, a reduction of 11dB and 7dB is obtained respectively for the first and the second mode. Power evaluations associated with various electronic components are also presented. This work demonstrates the use of reduced energy control laws for solving gust alleviation problems in small UAV, provides the experimental verification details, and focuses on applications to autonomous light-weight aerospace systems.

Paper Details

Date Published: 27 March 2012
PDF: 11 pages
Proc. SPIE 8341, Active and Passive Smart Structures and Integrated Systems 2012, 834114 (27 March 2012); doi: 10.1117/12.926800
Show Author Affiliations
Ya Wang, Virginia Polytechnic Institute and State Univ. (United States)
Daniel J. Inman, Virginia Polytechnic Institute and State Univ. (United States)

Published in SPIE Proceedings Vol. 8341:
Active and Passive Smart Structures and Integrated Systems 2012
Henry A. Sodano, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?