Share Email Print

Proceedings Paper

Impulse response characterization of the propagation and scattering environment in through-wall applications using an S-band noise radar
Author(s): Sonny Smith; Ram M. Narayanan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An ultrawideband (UWB) random noise radar operating at S-Band has been developed for through-wall detection, ranging, tracking, and imaging of targets. The system transmits a bandlimited UWB noise signal and accomplishes detection by cross-correlating the reflected signal with a time-delayed replica of the transmit signal. Noise radars have been found eminently suitable for most though-wall radar applications. Yet, in such scenarios, the antennas and the barrier (i.e. the wall) cause distortions in the return signal due to their frequency-dependent radiation and loss characteristics, respectively. In this paper, we explore the feasibility of characterizing the impulse response of various barriers and obstructions via measurements with the S-Band noise radar. As is well known, the entire operation of a linear system (e.g., antenna or barrier) can be captured in its impulse response h(t), i.e. the output of the system when excited by an impulse function at its input, δ(t). Thus, impulse response testing, generally, provides a complete diagnosis of the system over its entire mode of operation. This paper will present results on our impulse response characterization of the propagation and scattering environment through a barrier by the atypical method of cross correlation of noise signals. In addition, we will introduce a simple electromagnetic forward model for wall propagation and accompanying simulations.

Paper Details

Date Published: 3 May 2012
PDF: 10 pages
Proc. SPIE 8361, Radar Sensor Technology XVI, 836118 (3 May 2012); doi: 10.1117/12.922457
Show Author Affiliations
Sonny Smith, The Pennsylvania State Univ. (United States)
Ram M. Narayanan, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 8361:
Radar Sensor Technology XVI
Kenneth I. Ranney; Armin W. Doerry, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?