Share Email Print
cover

Proceedings Paper

A novel architecture for information retrieval system based on semantic web
Author(s): Hui Zhang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Nowadays, the web has enabled an explosive growth of information sharing (there are currently over 4 billion pages covering most areas of human endeavor) so that the web has faced a new challenge of information overhead. The challenge that is now before us is not only to help people locating relevant information precisely but also to access and aggregate a variety of information from different resources automatically. Current web document are in human-oriented formats and they are suitable for the presentation, but machines cannot understand the meaning of document. To address this issue, Berners-Lee proposed a concept of semantic web. With semantic web technology, web information can be understood and processed by machine. It provides new possibilities for automatic web information processing. A main problem of semantic web information retrieval is that when these is not enough knowledge to such information retrieval system, the system will return to a large of no sense result to uses due to a huge amount of information results. In this paper, we present the architecture of information based on semantic web. In addiction, our systems employ the inference Engine to check whether the query should pose to Keyword-based Search Engine or should pose to the Semantic Search Engine.

Paper Details

Date Published: 12 January 2012
PDF: 5 pages
Proc. SPIE 8350, Fourth International Conference on Machine Vision (ICMV 2011): Computer Vision and Image Analysis; Pattern Recognition and Basic Technologies, 83500C (12 January 2012); doi: 10.1117/12.920245
Show Author Affiliations
Hui Zhang, Chinese People's Armed Police Force Academy (China)


Published in SPIE Proceedings Vol. 8350:
Fourth International Conference on Machine Vision (ICMV 2011): Computer Vision and Image Analysis; Pattern Recognition and Basic Technologies
Safaa S. Mahmoud; Zhu Zeng; Yuting Li, Editor(s)

© SPIE. Terms of Use
Back to Top