Share Email Print
cover

Proceedings Paper

Photonic generation of ultra-wideband pulses using a fiber delay interferometer
Author(s): Fei Wang; Xinliang Zhang; Yin Zhang; Enming Xu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We demonstrate a novel scheme to generate ultra wideband (UWB) doublet pulses by inputting a dark return-to-zero (RZ) signal into a fiber delay interferometer (FDI). When a dark RZ pulse train with a repetition rate of 0.625 GHz and a pulse width of 120 ps was inputted into a FDI with a free spectrum range (FSR) of 0.16 nm (~20 GHz, according time delay is ~50 ps) and an extinction ratio (ER) of 9 dB, by adjusting the control temperature of the FDI, the phase difference of the input light on the both fiber arms of the FDI is changed and controlled, UWB doublet pulse is directly generated at the output port of the FDI. The system parameters effects on the output signal were also discussed. Moreover, we numerically demonstrated that, by carefully optimizing system parameters, UWB quadruplet pulses also can be generated. This scheme has some distinct advantages including easy integration, convenient tuning, good stability, and so on. Presented method also accords with the general features in future applied UWB system, namely, single optical source input, simple configuration and passive device.

Paper Details

Date Published: 22 February 2012
PDF: 6 pages
Proc. SPIE 8333, Photonics and Optoelectronics Meetings (POEM) 2011: Optoelectronic Devices and Integration, 833306 (22 February 2012); doi: 10.1117/12.918326
Show Author Affiliations
Fei Wang, Chongqing Univ. of Technology (China)
Xinliang Zhang, Huazhong Univ. of Science and Technology (China)
Yin Zhang, Huazhong Univ. of Science and Technology (China)
Enming Xu, Nanjing Univ. of Posts and Telecommunications (China)


Published in SPIE Proceedings Vol. 8333:
Photonics and Optoelectronics Meetings (POEM) 2011: Optoelectronic Devices and Integration
Erich Kasper; Jinzhong Yu; Xun Li; Xinliang Zhang; Jinsong Xia; Junhao Chu; Zhijiang Dong; Bin Hu; Yan Shen, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray